

The
General Electric
DATANET-760
Keyboard/Display

"ee |B

A New
Man-Computer
Relationship
Time-sharing, direct access, real time—these are the
buzz-words in data processing today. These techniques
are exciting and they are revolutionary —because they
let the user talk directly to the computer.

Implicit in this new relationship is the requirement
for a device—called a “terminal” —through which man
can converse with the computer using symbols familiar
to him.

The General Electric DATANET-760* is a Keyboard/
Display terminal system which allows the user to talk to
the computer in plain English from a distance of a few
feet or thousands of miles. With the DATANET-760 at
your fingertips you can solve problems, call-out and up-
date computer stored data and, in effect, maintain an
efficient and profitable control of every facet of a large
and diversified organization.

Virtually anyone can operate the DATANET-760
Keyboard/Display terminal. No previous computer
experienceisrequired. General Electric time-sharing com-
puters can talk to you in several easy-to-learn, easy-to-use
languages like BASIC (developed at Dartmouth College)
and FORTRAN.

*DATANET, Registered Trademark of the General Electric Company

Scientific | Engineering Management Information

Inventory Control Time-Sharing

Order Inquiry and Processing Customer Service

Management projection. In addition, the DATANET-760 is perfectly
The DATANET-760 provides instantaneous access suited for rapid turnaround order entry systems —allow-
to computer manipulated information to allow timely, ing complete Processing of an order, from stock check
effective management decisions and more profitable joremote print-out of shipping documents, to be handled
operational control. A multitude of complex data—such In minutes.

as project status, sales analysis, customer profile and : .
current profit and loss statements—is available in an Manufaciuring
instant. Proved techniques enable selective information The DATANET-760 enables manufacturing management
to be kept secure from those without the need-to-know. to maintain up-to-the-minute control over inventory,

material procurement, manpower requirements, produc-
Engineering/Scientific tion scheduling and expediting. Simply by typing out a
Users in industrial, educational and government research request on the keyboard of the DATANET-760 such infor-
labs no longer need wait for card punching, verifying mation as complete vendor performance data, or the
and human handling delays for solutions to computer- record of rejected items can be displayed instantaneously.
solved problems. The DATANET-760 allows conversation Decisions can be made and action taken on the basis of
Directly with a time-shared computer for real-time prob- current, accurate information.
lem solving. Problems can be composed on the display
screen in the off-line mode—which allows editing and Personnel
correction before transmission—and then sent to the

’ ; “ ” Under computer program control, a personnel manager
computer in a single burst. “Scratch pad” calculations ahi :

: : can have a listing of employees and applicants with a
can be worked on the screen directly below the primary : : :
pichlen needed skill through the DATANET-760 simply by typing

in a description of the desired skill. Complete personnel
Finance records, includingwork history, absentee record, vacation

; ; andsick-leavetime used/accrued, health insuranceNot only does the DATANET-760 provide direct access : i he :
g . rs : : : claims, etc.,—are available in an instant. Personnel can

to financial and statistical data, it also is a medium : : ¢ : .
; ; give managers immediate information about employees

through which that information can be kept current. : :
: and applicants to allow most effective use of manpower.

Computer stored files can be updated remotely, at the
information source, as new data becomes available. The
DATANET-760’s formatting and editing capabilities make Customer Service
updating and verification a simple, quick-turnaround op- Queries about charges, account status and often customer
eration. Time, manpower and paperwork is conserved complaints arereceived in greatnumbersdaily by utilities,
Mr banks and consumer credit operations. With the

arketing DATANET-760, complete customer records can be instan-
With the DATANET-760, a marketing manager has instant taneously retrieved as customer service personnel are
accesstosuchinformation as shelf inventory status, conversing with the customer over the phone or over the
salesman’s activity reports, and customer files. Sales anal- counter. Much search time is saved and customers are
ysis—by territory, product and salesman—can be spared irritating delays. In utility applications, requests
accomplished in a moment from the marketer's desk. for new service can be handled by a “new business” clerk
Significant data such as forecasts, effects of price vari- and the new file input by her directly to the computer,
ations on sales/net profit, etc., can be developed with via the DATANET-760. A “hook-up” order could be simul-
computer assistance and displayed for decision confer- taneously printed out remotely at the utility service unit
ence or executive meetings via TV monitor or video closest to the new customer.

Unique
Capabilities
of the

Complete Access to Every Character Position
on the Display Page

Notonly does the operator have complete access to every
position on the display, but the DATANET-760 also allows
the computer complete access as well. Changes or entries
can be made on any line and in any character position
without disturbing or rewriting data already displayed
on the same line. This is a significant feature, and is
especially important in file/form updating applications.

Exceptional Page Display Capacity
A DATANET-760 terminal may display 1196 symbols in a
page array of 26 lines by 46 characters on its 14-inch TV
display screen. Because of the modular design of the
DATANET-760, terminals may be assigned a full display
page, or segments of 4, 8 or 16 textual lines by 46
characters. This allows the most efficient utilization of
the system in relation to the functional EDP responsibility
assigned each terminal location.

Line Drawing Capability
Special symbols, standard on every DATANET-760 key-
board, allow the operator to draw continuous vertical
and horizontal lines on the display screen, as well
as segmented diagonal lines. This allows simple charts,
diagrams, forms and tables to be drawn on the screen
and stored in computer memory.

Standard Television Monitor Compatibility
The DATANET-760 employs a standard 525-line TV dis-
play. This standard video compatibility lets you couple
many standard, industrial quality television monitors
directly to the DATANET-760. This allows the sharing of
information, management monitoring of input data, and
simple conference hook-ups. Monitors may be co-located
with the keyboard display terminal or implaced consid-
erable distances from the terminal. Status Monitoring —

containing an error it causes the DATANET-760 controller
to automatically retransmit the message. If a predeter-
mined number of retransmissions does not result in
correction of the error, the computer automatically sends
a message notifying the operator that manual recovery
is necessary. If an error is detected by the DATANET-760
in a computer generated message, a blinking symbol is
displayed on the display screen. This signals the operator
that the message is in error and that an automatic retrans-
mission request has been made by the DATANET-760.

Flashing Message
Any single character or field of characters can be dis-
played in a flashing, or blinking, mode to call special
attention to certain information to the operator or
viewer. This feature, under program control, is very useful
in status reporting or, in file maintenance, to indicate

the standard TV compatibility also gives the user a very the field of information to be updated.
economical status monitoring capability. Aterminal . .

: eis Multiple Hard Copy Optionsmemory segment may be assigned a status monitoring
function and be addressed and updated by the computer. Up to four page —printers may be connected to the
One or more standard TV monitors may be coupled to DATANET-760 Controller to provide hard copy of display
that memory segment to provide status “monitor boards” data on request from any display terminal.
at appropriate locations. Video Projection —the data dis- CL
play can be projected for large screen viewing with the Reliability
use of standard video projection equipment.

Adtomatic Tab The DATANET-760 employs 99% monolithic inte-
grated circuitry for high reliability. General Electric

A tab key and tab stop function let you quickly enter Keyboard/Display sub-systems have been trans-
data in computer stored formats. The tab function has a poried all over the United. States. for countless
scanning action that lets you move automatically from demonstrations. Despite the “bumps” and “bangs”
a position on a particular line to another tab-stop which of all manner of transportation handling, these
may be located several lines below. systems performed admirably. Special attention to

Crror CORO Ra Racy realistic communications requirements make the
DATANET-760 a genuinely effective and dependa-

A very important feature of the DATANET-760 is its error ble remote access terminal system.
control capability. If the computer receives a message

1 : h

Pu _- DOLE% Ta “ TA

= l # ty SUBSET
SINGLE

DATA
SUBSET

JP TO FOUR PRINTERS

DATANET-760
DISPLAY

CONTROLLER

JP TO 32 DATANET-760 KEYBOARD/DISPLAY TERMINALS

Typical System Configuration
STANDARD STANDARD

TV MONITOR TV MONITOR

Privacy
ot
Data
In a time-sharing, multiprogramming computer system,
it is absolutely essential that there be proven, reliable
methods to prevent the accessing of confidential infor-
mation by uncleared or unqualified individuals. General
Electric time-sharing computers have proved techniques
that do just that...with just a simple typed statement.

In addition to complete privacy, you can make a file
accessible to specific persons and control the condition
of their access. With a simple statement, you can make
the file available only for reading, only for execution or
for full access (read, write or execute).

A,
Flexible
System
The DATANET-760 design is based on highly flexible
modular concepts, allowing an information Subsystem
to be tailored to individual requirements. Furthermore,
auseris not forever committed to an initial configuration.
Terminals may be added, their character display capacity
increased or decreased, and they may be located and re-
located up to 1,000 feet from the central Controller.
Post-installation configuration changes or addition of
modular options are simple, inexpensive in-field
operations.

A typical configuration might consist of up to 32
DATANET-760 Keyboard/ Display remote terminals com-
municating simultaneously through a DATANET-760 Dis-
play Controller with a distant computer—via a single
telephone data communications subset. Additionally,
standard TV monitors can be connected to either the
Keyboard/Display terminal or the Display Controller.

Up to four printers may be connected to the Display
Controller to provide simultaneous printout of data as
required from any of the Keyboard/Display terminals.

Description
of Subsystem

Keyboard /Display Terminal
The DATANET-760 remote terminal consists of a tele-
vision display module and a keyboard module. The key-
board and display modules may be co-located or
separated by several feet. The display module contains
a 14-inch cathode ray tube and supporting electronics.
Brightness, contrast and other video display controls are
easily accessible by the operator. The highly-reliable
keyboard has a standard typewriter layout of alpha-
numeric symbols plus special control keys for drawing
lines, transmitting data, etc.

Because of the modular design of the DATANET-760,
terminals may be assigned a full display page of 26 tex-
tual lines, or segments of 4, 8 or 16 lines by 46 characters.

Display Controller
The Display Controller services up to 32 DATANET-760
remote display terminals, allowing them to communicate
simultaneously with the computerby direct connection or
through a single telephone data communications subset.

The Controller cabinet contains the Basic Display
Controller, buffer memories for the Keyboard/Display
terminals, and optional Data Line Controller and Page
Print Controller modules. Up to four buffer memories —
called Terminal Memory Units—may be installed in the
Display Controller cabinet. Each Terminal Memory Unit
may service up to eight simultaneous access Keyboard/
Display terminals. The design is modular, allowing op-
tional modules to be added simply by “plugging them
in”. Keyboard/Display terminals may be located up to
1000 feet from the Display Controller.

Printer

Any printer comparable to a Teletype Model 33 or 35
Read-Only unit may be interfaced directly to the
DATANET-760 or connected remotely through telephone
data communications subsets. As many as four printers
may be connected to one Display Controller simultane-
ously, allowing printout of display data from any of the
Keyboard/Display terminals.

Specifications
Summary

Presentation — page array of symbols (26 textual lines by
46 characters=1196 characters).

Character Repertoire —total of 64 symbols: including 26
alphabetics, 10 numerics and 28 special symbols.

Data Communications Rates —1200 or 2400 bits per
second.

Self-Contained Processing and Storage —for off-line com-
position, editing and correction.

TV Type Display —allows use of standard TV monitors,
and TV video projection and distribution equipment.
High brightness in office light ambients.

Viewing Surface —14” rectangular cathode ray tube.
Format is approximately 7 x 9.3 inches (on 14” CRT).

Symbol Matrix —7 x 10 TV lines.
Keyboard Input—standard typewriter key arrangement.

Operator has complete access to every character
position on the display page, as does the computer.

Character Code —ASCIl (American Standard Code for
Information Interchange).

Transmission Control —allows selection of any portion
of display page for transmission to the computer.

Dimensions —Keyboard/Display Terminal: height, 17”;
width, 16”; depth, 27”.
Display Controller: height, 62”; width, 27 1/4”;
depth, 27 1/4”.

Power Consumption —Keyboard/Display Terminal —200
watts.

Display Controller—750 watts (maximum config-
uration).

Circuitry —99% monolithic integrated circuits.
Hard Copy —up to four Teletype Model 33 or 35 Read/

Only printers —or comparable equipment—may be
simultaneously driven by one Display Controller
when Page Print Controller options are installed.

ATLANTA, GEORGIA
BOSTON, MASSACHUSETTS
CHARLOTTE, NORTH CAROLINA
CHICAGO, ILLINOIS e

CINCINNATI, OHIO
CLEVELAND, OHIO eo

COLUMBUS, OHIO
DALLAS, TEXAS eo

DENVER, COLORADO
DES MOINES, IOWA
DETROIT, MICHIGAN
HARTFORD, CONNECTICUT
HONOLULU, HAWAII
HOUSTON, TEXAS
HUNTSVILLE, ALABAMA
INDIANAPOLIS, INDIANA
JACKSONVILLE, FLORIDA
KANSAS CITY, MISSOURI
LOS ANGELES, CALIFORNIA
LOUISVILLE, KENTUCKY
MEMPHIS, TENNESSEE
MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MOUNTAINSIDE, NEW JERSEY
NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK e

OKLAHOMA CITY, OKLAHOMA
OMAHA, NEBRASKA
ORLANDO, FLORIDA
PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA e

PITTSBURGH, PENNSYLVANIA
PROVIDENCE, RHODE ISLAND
SACRAMENTO, CALIFORNIA
SAN FRANCISCO, CALIFORNIA
SCHENECTADY, NEW YORK eo

SEATTLE, WASHINGTON
ST. LOUIS, MISSOURI
SYRACUSE, NEW YORK
WASHINGTON, D.C. AREA eo

Africa:
Bull-General Electric and Affiliates

Abidjan, Algiers, Casablanca,
Dakar, Tananarive

Australia:
Australian General Electric Pty., Ltd.

Melbourne, e Sydney e

Canada: INFORMATION SYSTEMS DIVISION
Canadian General Electric Co., Ltd.

Montreal, Toronto 4

i GENERAL {3 ELECTRICBull-General Electric and Affiliates
Amsterdam, Athens, Basel,
Belgrade, Bern, Brussels,
Cologne, Copenhagen, Geneva,
Helsinki, Lisbon, London, Madrid,
Oslo, Paris, Stockholm, Vienna

Olivetti-General Electric
Bologna, e Milan, e Rome, Turin

Orient:
Bull-General Electric and Affiliates

Beirut, Istanbul, Tokyo
South America:
Bull-General Electric and Affiliates

Buenos Aires, Mexico, D.F.,
Montevideo, Sao Paulo

or write Drawer 270,
Phoenix, Arizona 85001
e Information Processing Centers
in these cities offer complete
computer services.

In the construction of the equipment described General Electric Company reserves the
right to modify the design for reasons of improved performance and operational flexibility.

CPB-462 (15M 5-66) LITHO IN U.S.A.

The
General Electric
DATANET-760

Keyboard/Display

Eee | Ha

GENERAL 3) ELECTRIC

A New
Man-Computer
Relationship
Time-sharing, direct access, real time—these are the
buzz-words in data processing today. These techniques
are exciting and they are revolutionary —because they
let the user talk directly to the computer.

Implicit in this new relationship is the requirement
for a device—called a “terminal” —through which man
can converse with the computer using symbols familiar
to him.

The General Electric DATANET-760* is a Keyboard/
Display terminal system which allows the user to talk to
the computer in plain English from a distance of a few
feet or thousands of miles. With the DATANET-760 at
your fingertips you can solve problems, call-out and up-
date computer stored data and, in effect, maintain an
efficient and profitable control of every facet of a large
and diversified organization.

Virtually anyone can operate the DATANET-760
Keyboard/Display terminal. No previous computer
experienceisrequired. General Electric time-sharing com-
puters can talk to you in several easy-to-learn, easy-to-use
languages like BASIC (developed at Dartmouth College)
and FORTRAN.

*DATANET, Registered Trademark of the General Electric Company

Scientific | Engineering Management Information

Inventory Contro: Time-Sharing

Order Inquiry and Processing Customer Service

Applications

Management projection. In addition, the DATANET-760 is perfectly
The DATANET-760 provides instantaneous access suited for rapid turnaround order entry systems —allow-
to computer manipulated information to allow timely, ing complete processing of an order, from stock check
effective management decisions and more profitable to remote print-out of shipping documents, to be handled
operational control. A multitude of complex data—such In minutes.
as project status, sales analysis, customer profile and .
current profit and loss statements—is available in an Manufacturing
instant. Proved techniques enable selective information The DATANET-760 enables manufacturing management
to be kept secure from those without the need-to-know. to maintain up-to-the-minute control over inventory,

material procurement, manpower requirements, produc-
Engineering / Scientific tion scheduling and expediting. Simply by typing out a
Users in industrial, educational and government research request on the keyboard of the DATANET-760 such infor-
labs no longer need wait for card punching, verifying mation as complete vendor performance data, or the
and human handling delays for solutions to computer- record of rejected items can bedisplayed instantaneously.
solved problems. The DATANET-760 allows conversation Decisions can be made and action taken on the basis of
Directly with a time-shared computer for real-time prob- current, accurate information.
lem solving. Problems can be composed on the display
screen in the off-line mode —which allows editing and Personnel
correction before transmission—and then sent to the
computer in a single burst. “Scratch pad” calculations Under compli Program coptiol, a personpel manager
can be worked on the screen directly below the primary can have 8 listing of employees and applicants With a
oroblem. needed skill through the DATANET-760 simply by typing

in a description of the desired skill. Complete personnel
Finance records, includingwork history, absentee record, vacation
Not only does the DATANET-760 provide direct access and sicloleavetime used/aceiued, hoalthinsurance

. ! i : ; i claims, etc.,—are available in an instant. Personnel can
to financial and statistical data, it also is a medium : : . ; :

through which that information can be kept current. give Managers immediate ivtosmatinn Bhaus employees
Computer sioveditiles canis updated rembtelyl ab the and applicants to allow most effective use of manpower.
information source, as new data becomes available. The
DATANET-760’s formatting and editing capabilities make Customer Service
updating and verification a simple, quick-turnaround op- Queries about charges, account status and often customer
eration. Time, manpower and paperwork is conserved. complaintsarereceived in great numbersdaily by utilities,

} banks and consumer credit operations. With the
Marketing DATANET-760, complete customer records can be instan-
With the DATANET-760, a marketing manager has instant taneously retrieved as customer service personnel are
accesstosuchinformation as shelf inventory status, conversing with the customer over the phone or over the
salesman’s activity reports, and customer files. Sales anal- counter. Much search time is saved and customers are
ysis—by territory, product and salesman —can be spared irritating delays. In utility applications, requests
accomplished in a moment from the marketer's desk. for new service can be handled by a “new business” clerk
Significant data such as forecasts, effects of price vari- and the new file input by her directly to the computer,
ations on sales/net profit, etc., can be developed with via the DATANET-760. A “hook-up” order could be simul-
computer assistance and displayed for decision confer- taneously printed out remotely at the utility service unit
ence or executive meetings via TV monitor or video closest to the new customer.

Unique
Capabilities
of the

Complete Access to Every Character Position
on the Display Page

Notonly does the operator have complete access to every
position on the display, but the DATANET-760 also allows
the computer complete access as well. Changes or entries
can be made on any line and in any character position
without disturbing or rewriting data already displayed
on the same line. This is a significant feature, and is
especially important in file/form updating applications.

Exceptional Page Display Capacity
A DATANET-760 terminal may display 1196 symbols in a
page array of 26 lines by 46 characters on its 14-inch TV
display screen. Because of the modular design of the
DATANET-760, terminals may be assigned a full display
page, or segments of 4, 8 or 16 textual lines by 46
characters. This allows the most efficient utilization of
the system in relation to the functional EDP responsibility
assigned each terminal location.

Line Drawing Capability
Special symbols, standard on every DATANET-760 key-
board, allow the operator to draw continuous vertical
and horizontal lines on the display screen, as well
as segmented diagonal lines. This allows simple charts,
diagrams, forms and tables to be drawn on the screen
and stored in computer memory.

Standard Television Monitor Compatibility
The DATANET-760 employs a standard 525-line TV dis-
play. This standard video compatibility lets you couple
many standard, industrial quality television monitors
directly to the DATANET-760. This allows the sharing of
information, management monitoring of input data, and
simple conference hook-ups. Monitors may be co-located
with the keyboard display terminal or implaced consid-
erable distances from the terminal. Status Monitoring —

containing an error it causes the DATANET-760 controller
to automatically retransmit the message. If a predeter-
mined number of retransmissions does not result in
correction of the error, the computer automatically sends
a message notifying the operator that manual recovery
is necessary. If an error is detected by the DATANET-760
in a computer generated message, a blinking symbol is
displayed on the display screen. This signals the operator
that the message is in error and that an automatic retrans-
mission request has been made by the DATANET-760.

Flashing Message
Any single character or field of characters can be dis-
played in a flashing, or blinking, mode to call special
attention to certain information to the operator or
viewer. This feature, under program control, is very useful
in status reporting or, in file maintenance, to indicate

the standard TV compatibility also gives the user a very the field of information to be updated.
economical statusmonitoring capability. Aterminal . .

; hn Multiple Hard Copy Optionsmemory segment may be assigned a status monitoring
function and be addressed and updated by the computer. Up to four page —printers may be connected to the
One or more standard TV monitors may be coupled to DATANET-760 Controller to provide hard copy of display
that memory segment to provide status “monitor boards” data on request from any display terminal.
at appropriate locations. Video Projection —the data dis- CL
play can be projected for large screen viewing with the Reliability
use of standard video projection equipment.

Automatic Tab The DATANET-760 employs 99% monolithic inte-
grated circuitry for high reliability. General Electric

A tab key and tab stop function let you quickly enter Keyboard/Display sub-systems have been trans-
data in computer stored formats. The tab function has a ported all over the United States for countless
scanning action that lets you move automatically from demonstrations. Despite the “bumps” and “bangs”
a position on a particular line to another tab-stop which of all manner of transportation handling, these
may be located several lines below. systems performed admirably. Special attention to

Biro Contiol ERR avery realistic communications requirements make the
DATANET-760 a genuinely effective and dependa-

A very important feature of the DATANET-760 is its error ble remote access terminal system.
control capability. If the computer receives a message

SINGLE
7s 3 DATA
i SUBSET

SING.
DATA

SUBSET

HIP TO FOUR PRINT"

DATANET-760
DISPLAY

CONTROLLER" |

UP TO 32 DATANET-760 KEYBOARD/ DISPLAY TERMINALS

Typical System Configuration
STANDARD STANDARD

['V MONITOR TV MONITOR

Privacy
of
Data
In a time-sharing, multiprogramming computer system,
it is absolutely essential that there be proven, reliable
methods to prevent the accessing of confidential infor-
mation by uncleared or unqualified individuals. General
Electric time-sharing computers have proved techniques
that do just that...with just a simple typed statement.

In addition to complete privacy, you can make a file
accessible to specific persons and control the condition
of their access. With a simple statement, you can make
the file available only for reading, only for execution or
for full access (read, write or execute).

A,
Flexible
System
The DATANET-760 design is based on highly flexible
modular concepts, allowing an information Subsystem
to be tailored to individual requirements. Furthermore,
auseris not forever committed to an initial configuration.
Terminals may be added, their character display capacity
increased or decreased, and they may be located and re-
located up to 1,000 feet from the central Controller.
Post-installation configuration changes or addition of
modular options are simple, inexpensive in-field
operations.

A typical configuration might consist of up to 32
DATANET-760 Keyboard/ Display remote terminals com-
municating simultaneously through a DATANET-760 Dis-
play Controller with a distant computer—via a single
telephone data communications subset. Additionally,
standard TV monitors can be connected to either the
Keyboard/Display terminal or the Display Controller.

Up to four printers may be connected to the Display
Controller to provide simultaneous printout of data as
required from any of the Keyboard/Display terminals.

Description
of Subsystem

Keyboard/Display Terminal
The DATANET-760 remote terminal consists of a tele-
vision display module and a keyboard module. The key-
board and display modules may be co-located or
separated by several feet. The display module contains
a 14-inch cathode ray tube and supporting electronics.
Brightness, contrast and other video display controls are
easily accessible by the operator. The highly-reliable
keyboard has a standard typewriter layout of alpha-
numeric symbols plus special control keys for drawing
lines, transmitting data, etc.

Because of the modular design of the DATANET-760,
terminals may be assigned a full display page of 26 tex-
tual lines, or segments of 4, 8 or 16 lines by 46 characters.

Display Controller
The Display Controller services up to 32 DATANET-760
remote display terminals, allowing them to communicate
simultaneously with the computer bydirect connection or
through a single telephone data communications subset.

The Controller cabinet contains the Basic Display
Controller, buffer memories for the Keyboard/Display
terminals, and optional Data Line Controller and Page
Print Controller modules. Up to four buffer memories —
called Terminal Memory Units—may be installed in the
Display Controller cabinet. Each Terminal Memory Unit
may service up to eight simultaneous access Keyboard/
Display terminals. The design is modular, allowing op-
tional modules to be added simply by “plugging them
in”. Keyboard/Display terminals may be located up to
1000 feet from the Display Controller.

Printer

Any printer comparable to a Teletype Model 33 or 35
Read-Only unit may be interfaced directly to the
DATANET-760 or connected remotely through telephone
data communications subsets. As many as four printers
may be connected to one Display Controller simultane-
ously, allowing printout of display data from any of the
Keyboard/Display terminals.

Specifications
Summary

Presentation —page array of symbols (26 textual lines by
46 characters=1196 characters).

Character Repertoire —total of 64 symbols: including 26
alphabetics, 10 numerics and 28 special symbols.

Data Communications Rates —1200 or 2400 bits per
second.

Self-Contained Processing and Storage — for off-line com-
position, editing and correction.

TV Type Display —allows use of standard TV monitors,
and TV video projection and distribution equipment.
High brightness in office light ambients.

Viewing Surface —14" rectangular cathode ray tube.
Format is approximately 7 x 9.3 inches (on 14” CRT).

Symbol Matrix—7 x 10 TV lines.
Keyboard Input—standard typewriter key arrangement.

Operator has complete access to every character
position on the display page, as does the computer.

Character Code —ASCIl (American Standard Code for
Information Interchange).

Transmission Control —allows selection of any portion
of display page for transmission to the computer.

Dimensions —Keyboard/Display Terminal: height, 17”;
width, 16”; depth, 27”.
Display Controller: height, 62”; width, 27 1/4”;
depth, 27 1/4”.

Power Consumption — Keyboard /Display Terminal —200
watts.

Display Controller—750 watts (maximum config-
uration).

Circuitry —99% monolithic integrated circuits.
Hard Copy —up to four Teletype Model 33 or 35 Read/

Only printers—or comparable equipment —may be
simultaneously driven by one Display Controller
when Page Print Controller options are installed.

ATLANTA, GEORGIA
BOSTON, MASSACHUSETTS
CHARLOTTE, NORTH CAROLINA
CHICAGO, ILLINOIS e

CINCINNATI, OHIO
CLEVELAND, OHIO e

COLUMBUS, OHIO
DALLAS, TEXAS e

DENVER, COLORADO
DES MOINES, IOWA
DETROIT, MICHIGAN
HARTFORD, CONNECTICUT
HONOLULU, HAWAII
HOUSTON, TEXAS
HUNTSVILLE, ALABAMA
INDIANAPOLIS, INDIANA
JACKSONVILLE, FLORIDA
KANSAS CITY, MISSOURI
LOS ANGELES, CALIFORNIA
LOUISVILLE, KENTUCKY
MEMPHIS, TENNESSEE
MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MOUNTAINSIDE, NEW JERSEY
NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK e

OKLAHOMA CITY, OKLAHOMA
OMAHA, NEBRASKA
ORLANDO, FLORIDA
PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA e

PITTSBURGH, PENNSYLVANIA
PROVIDENCE, RHODE ISLAND
SACRAMENTO, CALIFORNIA
SAN FRANCISCO, CALIFORNIA +

SCHENECTADY, NEW YORK e

SEATTLE, WASHINGTON
ST. LOUIS, MISSOURI
SYRACUSE, NEW YORK
WASHINGTON, D.C. AREA

Africa:
Bull-General Electric and Affiliates

Abidjan, Algiers, Casablanca,
Dakar, Tananarive

Australia:
Australian General Electric Pty., Ltd.

Melbourne, Sydney e

Canada: INFORMATION SYSTEMS DIVISION
Canadian General Electric Co., Ltd.

Montreal, Toronto

7 GENERAL 3 ELECTRICBull-General Electric and Affiliates
Amsterdam, Athens, Basel,
Belgrade, Bern, Brussels,
Cologne, Copenhagen, Geneva,
Helsinki, Lisbon, London, Madrid,
Oslo, Paris, Stockholm, Vienna

Olivetti-General Electric
Bologna, eMilan, e Rome, Turin

Orient:
Bull-General Electric and Affiliates

Beirut, Istanbul, Tokyo
South America:
Bull-General Electric and Affiliates

Buenos Aires, Mexico, D.F.,
Montevideo, Sao Paulo

or write Drawer 270,
Phoenix, Arizona 85001
e Information Processing Centers
in these cities offer complete
computer services.

In the construction of the equipment described General Electric Company reserves the
right to modify the design for reasons of improved performance and operational flexibility.

CPB-462 (15M 5-66) LITHO IN U.S.A.

[(:eyboard/ Display Subsystem Manual

DATANET-/760
Keyboard/ Display
Subsystem Manual

searEapieitat:

PREFACE

This Manual contains reference information on General Electric's DATANET-760 Keyboard/
Display Subsystem.

Comments on this publication may be addressed to Technical Publications, Oklahoma City
Computer Operation, General Electric Company, P,O. Box 129 Oklahoma City, Oklahoma.
73101.

© 1966 by General Electric Company

ii

Contenis

SUBSYSTEM DESCRIPTION

Subsystem Configuration « « « ec eo oe oo occ co ooeoceosccoccosssoscocss

Operalion ss se ssssssssssinsssssesssnsssissssovssndiceceeess

ApPliCALIOn » s sev ss ss wns snr srs onsen einssetviivesoinsmanens

Modes of Operation + ss cess vs ssn ns nssn vais visnisini amines anissiennsie

Local (Off-Line) Compose) Mode « + « ¢ ¢ sc es es esses ososcssscssscs

Becelve Mode «vss veceensarsssceveccnosssscescsnssssenoes
Dita Transmission ces sve ev sss svsssessenmesssvnosssenssnc

Prinling ssn sn nienwvmniosooion assesses seine sieeve sinmivise’ '

DISPLAY TERMINAL UNIT
Keyboard Module « «cc sist iss vo vin ninie ssn oeinimeioisininie nietniviein vies nine 5

Alpha-NumeriCc Keys ¢s ¢« e es c ec cc sss vss esscscsostsssscccscsascsssas

Entry Marker Comrol Boys «+ «ceo cose nse osvsvinsinseensnssseio

Entry Marker Control Group (Optional) + « « « ¢ ¢ ¢ ec ce cesses ssssssns

Display Module + sve eee vases setesnssnscosesnssssneensonasio

Brigliness « e ees vs sisonennsinisnoiniestisieeeniosennininesionsion's

CORLLOLIE «oie ivininin wininininininis minnin winishenieisistoinseisinininins ns viele ni isise

SCreon SIZ vis civ sis siaeivinieis sineininniveieisisinie sie elainivie vine wiv einieeTextual DIiSplay:eeeeivisicvinnissinvimmininisieeodinleoinieinieviessinasieMode Indicator DISPLAY «cs ces sie sininlein sino vive ein anit sinc os vvals

Character Size ois Bis nln win wine» wieinieieieieieieininie wie tine We elie site wine

Monlor Un cieisic oc sin vininis ninivnvnie sliatsinin sin in sein sniel sisi wie imines

DISPLAY CONTROLLER
Basic Controller o lnilmiiwive tale iui mene wml Mee) # RLS a wee aad eles eile ee 11

Keyboard Enlry COnlrol «ee ss oss oie eivieavaininiene vin nininieininsineine 12

Character Generator ssc +. ves «ois asa oto ass acinieisee vines sinivinieis Co

POWETr SUPDIICS 0 cstv vo sss isissonsosvnesssssnsesssecsnens

Master Timing SYS{E) sc vs ss ss nnn ssininoenscsosevsssssvansss

Termingl Memory Unit «ccc c uss ssnsssessssnesiossvnsssnsees

Bull MOMOTY sc se so ee rinnnssssnmvosssssswoesnmintssssonvass

Video DistviDULION: ess sev sas ss nnv animes oscveecsvonisssesiesss

Data Line CONroller . « ve vit civ ssavinnsansninismsessncenosnsves

1200 Bit/Sec OpUION vis sv wos sos ones cusrinotonstssssesios

2000/2400 Bit/SeCc Option. «sss sv ss sv sss s'ss sn nsissnnsissnsssvs

Automatic Message Initiation «++ vce c cece eesssevececcssncnces

Transmission Frame Half Duplex «+. cc ee eee ssecceccccccssccnnn i3

PAGE PRINT CONTROLLER

Memory SiZeé es sss sss sssssssssssssssssssssssasssssssssooese 15
Operation Cain ain n aiein ein nie ee a ee ae ee ee a Re eee 15

ERROR CONTROL AND RECOVERY

Error Control and Recovery at DATANET-760 23 8 2 sie nin sine nivisinioieies 17
Absence of Transmission Frame ¢ « ¢ e se ec cs es sess esos sescosccscss 17

Reception of Message Having ETTOr «cc ceo ecco eee ececsssssscsse 17

Reception of Message for Busy Terminal «+s scceceeccccccesccss 3
Reception of Message Containing "NAK" and "ENQ" «cece ee eccesnses :
Reception of Message Containing "ACK" vt cvs ss ts ees s tr vonsssnnsss :

Reception of Message Containing "NUL" «sess vs secs ecccccccnsves :

DATANET-760 Response Priority eee sec cescccesesccsscccnsaes
Keyboard Locking + «cece eo econtnnesnssenssnsssnosnvonssnensss ’

Legal AdATeSSes: + «sve vanintisnsinssssininimis nin anisnivessnisio ,

Entry Marker Restoration olisi's oi olisis i's siisloils 0 si0is 0 slels ole ss sis sien 19

r

iii

Error Control and Recovery A the COmPULET vous soe vo v.00 ein ve eon sven 18

Reception. of Message HAVING LITO ov vv 0s vo ovis tios valve onsen eeeen 19

Reception of Message Containing "NAK" pees se see ie ~8
Reception of Message Containing "BUSY cutscene cn sronesosionsses 20
Reception of Message Containing Text (NUL) voce ver ons eaves onesens 20

Longitudinal Parity OPLION:sissnssme.v -vineviestnaieiniuniniesin¢aceinse20
ELECTRICAL CHARACTERISTICS, CABLING, AND ENVIRONMENT
Power ReqUITOMOILS: 4 civaivimio vino vain vinimioie es sive eiivisee a vins ete ee 21Display Comroller Unt|ouiocovoivianisvinsinenieieenesivaeoiveivtionses21Display Terminal Unit ee NPA A A Gn PSE 21

Underwriters Laboratory BOqUITEIents «oc os coe eacssin ss vsnsoesess 21

Radio Frequency ILeTIOrence 1... + vivivio swiss sinisie iv ol aie sins ein sieines oi

CABINET roily (ariatiia nim mtniioiins iota. wile ain imi io tori wioes ig tows on esa Li or Se fo wih i os Te ae Tl

Environmental CONGILIONS.vuessaisinbvsininoisinieoisininieiewinvietineialoieeee21
APPENDICES

A Communication Line Interface Signals and Pin Assignmentsc006000. 22
Page Print Controller SITNAUS viniv ovis ein ivan ainie wie sinew om ein aii ete ale oe 23

Typical Half Duplex Transmission Frame SEQUENCE + « « eo eo coe co 0 000s oo 24

Information Transmission FLANGE cao uve visions tain ennesessoseeses 26

J Message Format for Request for Retransmission of Message
Received in Error by the Computer ve eneie wie mi aaie ol wind win bl Tees fein wl a we 27

w Format for Message From Computer to Page Print Controller 28
: Summary of Message Types and Required Responses sin nin niu ian ee aie 29

Li Character Set DOrINAL. is sini viv sie sins a bin mnie die aise wnin a vie mon ote ok 30

J General Character COMPOSILION|vaissvvvivnivinsinwininosoiviesinietnaiebis33i< Allowable Display Terminal Address Bits Versus TMU Partitioning 34

=z

0lustraticons

Figure Page
] DATANET-760 Keyboard/Display, Block DISgram. « « «vs os vnin vio eves !

: Display Controller UNIL. os aise sos sivialsistnins sss o's voiois sissies nisin es° Display Terminal UNL=viesvnssssensoesnsrsssnsnsonsnesinsosCharacter Roperioire ec vivin so vv so nissen sis ss ssvonrssesansnsseeee

TYDICAl DISOIAY iis o's siniv inn via nins'nunio nin soins nnn enuinnesienes

Display Showing Mode Symbol PosIIOn a's ss sv ds ss sss esos enone se

DTU Display Module and Keyboard Module se dna eles Nee eee yn
Keyboard Layoul and Key Label «ve vv sv aisivs vans asin sin nne nie nswese

Operator Controls (Beneath SCIeeN)e « «ic os sass ss 222s a sas son ss oes

L Operator Control Listing «+ evs sie ass's ssn sn sist nvesinnmosnnsesses

i Maintenance COMIOIE. vo oasis n diss sions v's vio sn vmasin sens onineess

12 Mode Indicator and End of Text Symbol Positions «ccc eee eeeeeeeees
13 Mode Indicators and Meanings + + vss sess eo issessnesasensseesoe |

14 Rear View of Display Controller Unit. « « oc oc coo 5 ss 5 0 s's's ss oesisnseeee

DATANET-760 Keyboard Display Unit in Use

1. SUBSYSTEM DESCRIPTION

SUBSYSTEM CONFIGURATION the memory of the DCU. The coded charac-
: ; ters inthe memory are repetitively converted

A Vey bonyDoly ee to TV video and, along with synchronizing
2/pn-RumolLe CLSDYdY Sym p . » signals, are returned to the DTU. Selected
rapid communication ; with computers vom portions of the stored information are trans-
local Oy remote locations. > permits sous mitted on operator command to the computer,
yenienioniry and Sw OF dain SR either by direct connection or by standard
ivonsmission io ihe conipuier, any Yeooib, digital data telephone communication service.
storage, and presentation of responses. The x tbr OF dita Line. 00 Sood] t
DATANET-760 consists of a Display Control- Vevey o ihe commlIgniIon op ons

: : are available which provide a range of data
ler Unit and one or more TV-type Display Tato to fit virions npolications
Terminal Units. Up to 32 terminals, each of :
which may be at a remote location, may com-
municate with the computer through the Dis- The data display may be viewed at additional
play Controller Unit. Up to four page printers locations by coupling standard industrial-
may be connected to each Display Controller quality TV monitors to a Display Terminal
Unit (in place of Display Terminal Units) to Unit (DTU) or to the controller (DCU). The
provide simultaneous hard copy of display display can be projected for large-screen
data from any of the terminals. A block dia- viewing by use of standard video projection
gram of the system is shown in Figure 1. equipment.pmotSmee.TASoCnweynermDATA LINE BASIC "MEMORY DISPLAY

COMPUTES +i CONTROLLER M-¥| CONTROLLER Jo-. UNITS | gt TERMINAL
HH i | (UP TO 4)

(UP TO 8 PER TMU;
UP TO 32 TOTAL,
LESS NUMBER OF
PRINTERS.)

PAGE PRINTCONTROLLERS~~-pTOPRINTERS(UP TO 4) | (1 PER PPC)

| DISPLAY CONTROLLER UNIT
Ce i 0 a i i Gl li os

Figure 1. DATANET-760 Keyboard/Display, Block Diagram

The Display Controller Unit (DCU) (Figure 2) The presentation onthe DTU is a fixed-format
consists of a Basic Controller and up to four alpha-numeric display composed of up to 1196
Terminal Memory Units, each of which can characters and symbols stored in memory.
serve up to eight Display Terminal Units in The characters are arrayed in textual lines
simultaneous access. A Data Line Controller of 46 characters each. The number of lines
and multiple Page Print Controllers may be in the display varies from 4 to 26 depending
included on an ontional basis. on the number of DTU's assigned to the Ter-

minal Memory Unit in the DCU. The char-
The Display Terminal Unit (DTU) consists of acter repertoire consists of the English al-
a standard industrial-quality TV monitor, phabet, Arabic numbers, punctuation marks,
supporting electronics, and a typewriter-like and special symbols, as shown in Figure 4.
keyboard, as shown in Figure 3. Each DTU Four of the special symbols allow horizontal
communicates with the computer through the and vertical lines to be drawn for added em-
DCUviakeyboard entries. Keyboard entries phasis or generating simple diagrams, charts,
are converted to binary form and stored in nr tables. In addition, a flashing code allows

* DATANET is a reg. trade mark of the General Electric Company.

emergency or other important conditions to and typing the correct one. Erasure of the
be emphasized. entire display is accomplished by a single

control operation.

A TAB key allows the operator to quickly and
efficiently enter information into an operator-
composed or computer-stored format. De-
pressing the TABkey causes the entry mark-
er to scan the display face until it finds a
vertical line, where it stops. These vertical
lines, which serve as tab-stop markers, can
be positioned anywhere onthe display surface
by the operator or the computer.

The operator completes the composing, veri-
fying, and correction of the entry with the
system off-line. When satisfied that the in-
formation is correct, the operator locates the
"end of text" (ETX) symbol opposite the last
line of characters to be transmitted; then
returns the entry marker to the first char-
acter to be sent; and depresses the transmit
key. Successive characters are transmitted
up to the "end of text" symbol.

Responses from the computer are stored in
the memory of the DCU and immediately ap-
pear onthedisplay. The operator may obtain
a printed copy of any portion of his display -
when the page printing option is installed - by
depressing the PRT (print) pushbutton after
positioning the "end of text" (ETX) symbol
and entry marker as inthe data transmission
operation.

APPLICATION
The DATANET-760 has application in any
commercial, government, or educational

: ; } function requiring storage, retrieval, com-
Figure 2. Display Controller Unit munication, or display or human or computer-

generated data.
OPERATION Some typical applications include the follow-
The operator enters data by typing on the key- ing:
board as on an office typewriter. The char- eo Data entry and handling in automatic
acters and symbols are instantaneously dis-. check-out systemsplayed as they are typed. A special entry
marker appears onthe display to indicate the eo Data handling of reservations, and other
location of the next character to be entered. transportation and lodging information
The marker automatically indexes with each : :

® Production and inventory control, status
character entry or may be manually spaced reporting. tovocasting. and Blanmin
forward or backward, andup or down. It may p 8 8 p &
also be reset to the first character position ® Transmission, acquisition, storage, and
of the page or textual line. In addition to read-out of media news copy
providing repetitive character entry capabil- i :
ity, the (repeat) REPT key allows a continu- # Checking of account sinius, deposits,

: and withdrawals
ous scanning movement of the marker.
Changes or corrections are made by reloca- ® Accumulation, sorting, and read-out of
ting the marker to the erroneous character weather bureau data

®» Insurance claim adjustment and policy The DTU presentation for a representative
file maintenance and search management application is shown in Figure 5.

: Inthis application the operator would request
» Customer account mainienance, order a general form stored inthe computer, enter

processing, and invoicing the specific data--manpower estimates inthe
®» Control of personnel records, group display shown--and transmit the data to the

insurance files, payroll data, manpower computer for processing. Totals calculated
scheduling, and costing by the computer would be displayed, and, as

- : ; : the operator made changes, the new totals
! Library information retrieval, class- would appear. Any DTU in the system could

room instruction, and computer train- call up the complete display showing current
ng data at any time.

In all applications the DATANET-760 pro-
vides a direct link to the computer and under MODES OF OPERATION
program control, allows real-time problem There are two modes of operation for a
solving, and instantaneous information re- DATANET-760 Display Terminal Unit (DTU)
trieval. - "local" and '"'receive'. The "local" mode is

Figure 3. Display Terminal Unit

an off-line compose mode during which the or receive data via the communication line.
operator is free to write on his display with- Inthis mode, the operator is allowed to com-
out interruption by the computer. The pose or type on the display as long as he is
""receive' mode operates inthe same manner not transmitting or receiving a computer mes-
as the "local" mode with the exception that sage. However, while composing on the dis-
the DTU is able to receive a computer mes- play, he is subject to interruption by a com-
sage via the communication line. During puter-generated message. Duringtransmis-
either mode, the operator is able to transmit sion or reception of a message, keyboard
tothe computer or printall or any partof the entry is prevented, unless the message is an
data appearing on his display. A letter is automatic acknowledgment (ACK).
displayed in the left-hand margin of the dis-
play opposite the first line of data, as shown Received data begins loading at the position
in Figure 6, to indicate the mode of operation of the entry marker and proceeds sequentially
or that transmission or printing is taking from there with each character entry. The
place. computer can position the entry marker to

any position on the display to begin a mes-
sage. To end each message the computer

y 4 ? : Sen) transmits an "end of text" (ETX) code. How-: } Cc :D EE ¥ G ‘H :
LOH MN oFP QR ever, the ETXin a computer-generated mes-
SE T U V W X Vig < = sage does not affect the position of the ETX
y ip ban Nile EE symbol on the display. This symbol appears
7 $: i FERa as the letter ""C'" in the right-hand margin of
? the DTU display, and is movable to a position

NOTE: bk = blink following characters, Those any Mneiotitent. It is always dis-
Sp = space prayed.

ira If an error condition is detected on the com-LINE SYMBOLS (letter 18 BL | EE T3 munication line during the reception of a
shown for comparison) EEE message, the mode symbol will flash. The

flashing will continue until an error-free
Figure 4. Character Repertoire message is received. If the DTU is busy, the

error condition is ignored.

Local (Off-Line Compose)
Mode DATA TRANSMISSION
The DTU goes into this mode of operation When the DTU is in either the receive or the
when the local (LOC) pushbutton is depressed. local mode, the operator is able to initiate
During this mode, the DTU will not be able to data transmission onthe communication line.
receive data via the telephone communication The operator prepares a message for trans-
line. The operator is free to write on the dis- mission by positioning the end of text (ETX)
play through his keyboard without being af- symbol and returning the entry marker to the
fected by the communication line, and to trans- first character of the message. Positioning
mit displayed data. the ETX symbol in preparation for transmis-

sion is accomplished by moving the entry
When a DTU is operating in this mode, the marker to any character position of the last

tation will have on "LY in the mode line of text in the message and depressing
presen Ct the ETX key. The ETX symbol will then
symbol position. move from its present position to opposite

the last line of text in the message.
Upon receipt of a computer-generated mes-
sage addressed to a DTU operating in the Once the message is prepared for transmis-
local mode, a message indicating a busy sion, the operator depresses the transmit
status will be automatically transmitted to (TX) pushbutton. Transmission begins at the
the computer by the Display Controller Unit character identified by the entry marker posi-
(DCU). tion, proceeds sequentially on the page,

character by character, until the ETX symbol
: is reached. As soon as the operator de-

Receive Mode presses his transmit pushbutton, a "T'" ap-
The DTU goes into this mode of operation pears on the display as the Mode Symbol.
when the receive (REC) pushbutton is de- Upon receipt of an acknowledge (ACK) mes-
pressed. The mode symbolis the letter "R'. sage from the computer the "T'" is erased,
During this mode, the DTU is able to transmit the mode symbol appears as an "R'", and the

. IMANNING REQUIREHNENTS FORECAST: OAS lek

OCECGSIT @ EVP

AURAen Aro

FESOso

Figure 5. Typical Display

DTU is placed in the receive mode. If the in the first character position of the line fol-
operator changes the mode to local before the lowing the ETX symbol.
acknowledgment is received, the "L' mode
symbol remains on the display and the DTU PRINTING
remains in the local mode (see note). When the DTU is in either the receive or the

local mode, the operator may request a
_~MODE INDICATOR printed copy of any portion of his display.

Preparation of a message tobe printed is the
same operationally as for transmission. The
operator prepares a message by positioning

r the ETX symbol opposite the last line of text
¥ to be printed and returning the entry marker

: oe ETH to the first character of the message.

! pYea. Once the message is prepared, the operator
L depresses the print (PRT) pushbutton. This

action prevents further keyboard entry until
Fioure 6... Di ; message transmission is complete. The

g 15pl2y Re Symbol letter '""P" appears as the mode symbol indi-
cating to the operator that the request for
hard copy has been made. Upon receipt of

During transmission of a message consisting the acknowledge message from the computer
of more than one line of text, the codes for the "P'" is erased, and the DTU is free to
carriage return and line feed are automati- perform other functions. When the "P" is
cally transmitted at the end of each line erased, the mode symbol appears as an '""R'",
(except the final line). Immediately after the and the DTU is placed in the receive mode.
operator depresses the transmit pushbutton, If the operator changes the mode to local be-
keyboard entry is prevented until message fore the acknowledgmentis received, the "LL"
transmission is complete. After transmis- mode symbol remains on the display and the
sion is complete, the entry marker appears DTU remains in the local mode (see note).

INGLE

It is not recommended that the system be defeated in this manner, since NAK
responses will be ignored. By waiting for the ACK (T change to R) the opera-
tor has positive verificationthat the computer received the message correctly.

\Tt

5

2. DISPLAY TERMINAL UNIT

The Display Terminal Unit (DTU) consists of The space bar erases the character under the
two basic elements, the keyboard and the CRT entry marker, if any, displays a blank space,
display, as shown in Figure 7. and moves the entry marker one space for-

ward.VIDEO,™.met Seer. + ¥ een The following symbols are generated by using
a DISPLAY the SHIF Tkey and the designated symbol key.

Min as Key Label and Symbol Displayed

| The BLK (Blink) key enters the blink code in
memory (displayed as a space), causing the

Figure 7. DTU Display Module and Key- blinking of all following symbols up to the
board Module first space or up to and including character

position 46.

KEYBOARD MODULE
Entry Marker Control KeysThe keyboard module provides the standard y y

Alpha-Numeric Key group, the Command Key The entry marker control operations listed in
group, and the power switch. An optional Figure 8 are performed by using the control
group, the Entry Marker group, may also be key and the designated operation key. In the
included. The keyboard layout, including the case of the tab, line feed, and line return, it
optional key group, is shown in Figure 8. is not necessary to depress the control key.

The keyboard module is a physically separate
unit from the display module. The standard Entry Marker Control Group
cable length provided between the keyboard .
and display modules is 4 feet; however, for (Optional)
special applications the cable distance may be This group of keys will provide identical op-
up to 100 feet. erations to the Entry Marker Control Keys;

however, each operation may be performed
ha-Numeric Kevs with a single pushbutton. This group of keysAlp y is physically separated from the Alpha-Nu-

The following keys cause the entry and dis- meric area of the keyboard module. Figure
play of the corresponding character or sym- 8 lists this group also.
bol with a single key action:

Key Label and Symbol Displayed
A SER TENG GNSS 0 DISPLAY MODULE
’ I 4 WwW 3

J Q X 4 The display module is intended to be used as
| K R Y 5 a viewing device during composition and edit-
fe 1 S 7 6 ing of information prior to transmission and
F M T 0 7 for the presentation of response data received
C N U 1 5 from the computer.

n

The display is based on standard television For formats of fewer than 26 lines the for-
techniques. A two field interlaced scan sys- mat height is reduced proportionately and
tem is used in presenting the display data. will be approximately centered onthe screen.
The cathode ray tube is coated with P4 phos- Measurements are nominal values.
phor, whichis a high efficiency medium-short
persistence phosphor with white fluorescence
(5250 &). This is the same phosphor that is Mode Indicator Display
used in standard black and white home televi-
sion receivers. A DTU mode indicator is displayed in the

character space preceding the first text char-
acter position of the first format line, as
shown in Figure 12.

Brightness
The display brightness (light emitted by the The mode symbology and meaning are listed
CRT beam trace) exceeds 75 foot-lamberts. in Figure 13.
Since the contrast ratio is a function of the
direct incident screen light (from the room)
each room lighting condition will affect the The End of Text symbol (C) is located in the
absolute contrast ratio measurement. How- right margin following the 46th text character
ever, in a room with 70 foot-candles of dif- position as shown in Figure 12. It may be
fused ambient lighting the contrast ratio will positioned at the end of any line.
be at least 20:1.

Character Size

Controls Character size is a function of the format

The controls provided for the display module size and hence the screen size. The follow-
are of two types: Operator controls (shown ing table shows the approximate character
in Figure 9 and listed in Figure 10) which are size (standard, full sized characters) for 14-
readily accessible to and for use by the oper- inch and 23-inch screens:
ator, and maintenance controls (listed in Fig-
ure 11) which are intended for use only by : .
qualified maintenance personnel. Screen Size Standard Character Size(Diagonal) (HeightxWidth)14 inch 0.16 x 0.12 inch

23 inch 0.26 x 0.19 inch

Screen Size
The display module has a 14-inch (diagonal . .
measurement) screen cathode ray tube. Ex- The preceding values are nominal.
tension monitors are available on special
request with 14-inch and 23-inch screens.
(See page 9)

Monitor Unit

Monitor units may be connected to a DTU to
Textual Display provide additional viewing positions duplicat-

ing the information displayed onthe DTU. Up
The display format consists of from 4 lines tofour receive-only monitors canbe connect-
to 26 lines of text data, each line consisting ed in series to the video jack on the DTU.
of 46 characters. The number of lines is a Monitor units may also be connected to a
function of the number of DTU's per Terminal video output of a TMU for receive only - i.e.,
Memory Unit. The full format size (26 lines in place of a DTU. Up to five monitors may
of 46 characters) for a 14-inch screen is 6.3 be driven from a TMU video output. Monitor
by 8.0 inches. units are available on special request.

CONTROL KEYS

Key :
Label Operation

BS Backspace entry marker one space.

FS Forward space entry marker one space.

LINE Line Feed - Moves entry marker down one line at the same character
FEED position.
ETX End of Text - Enters ETX (C) symbol on display at end of line on

which the entry marker is located.

RLF Reverse Line Feed - Moves entry marker up one line at the same
character position.

PR Page Return - Returns entry marker to the first character position
on the first line.

RETURN Carriage Return - Moves entry marker to the first character position
of the line.

FORM Form Feed (clear memory) - Erases the entire display except for the
mode character, ETX symbol, and the optional Function characters.
This command also automatically page returns the entry marker.

TAB Moves entry marker from its initial position to the character position
following the next vertical line symbol.

Figure 8. Keyboard Layout and Key Label

COMMAND KEYS

Key
Label Operation

PRT Print - Causes the information displayed to be printed. Symbol "P"
appears in mode display position when print command is given, and
the marker is moved to the first character position of the line follow-
ing the ETX symbol when the information transfer takes place.

LOC Local - Allows the entry of data only from the keyboard. Symbol "L"
appears in mode display position when local operation is selected.

REC Communication - Allows the computer to enter or update display at
any time. The entry of data from the keyboard is also allowed.
Symbol "R" is displayed in the mode display position when REC
operation is selected.
Transmit - Request transmission of message to the computer. When
transmission is requested, keyboard entry is prevented until the
transmission is completed. The symbol "T'" appears in the mode
display position upon the TX command, and the entry marker is
positioned after the ETX symbol when the transmission is complete.

ENTRY MARKER CONTROL GROUP (OPTIONAL)

Key OperationLabel vperation

Backspace entry marker one space. (Repeated if held down.)

Forward space entry marker one space. (Repeated if held down.)
Line Feed - Moves entry marker down one line at the same character
position. If the entry marker is initially located on the last line of
the format, it will automatically return to the top line. (Repeated if
held down.)
Reverse Line Feed - Moves entry marker up one line at the same

} character position. When the entry marker reaches the top line of
the display, the Reverse Line Feed operation has no effect.
(Repeated if held down.)

PR Page Return - Returns entry marker to the first character position
on the first line.

LR Line Return - Moves entry marker to the first character position of
the line.

ETX End of Text - Enters ETX symbol on display at end of line on which
the entry marker appears.
Form Feed (clear memory) - Erases the entire display except the
mode character, ETX symbol, and the optional Function characters.
This command automatically page returns the entry marker.

Figure 8. Keyboard Layout and Key Label (Cont)

TX

FF

© -© Q Q
=> 0 2 0 ay 0 th

7 , : - r — oe LA

r i ,

/ OFF-ON HORIZ VERT . VERT N°
BRIGHTNESS POWER HOLD LIN HEIGHT HOLD CONTRAST

Figure 9. Operator Controls (Beneath Screen)

BRIGHTNESS - Controls background display brightness.

OFF-ON POWER - Controls power to both the display module and the keyboard.

HORIZONTAL HOLD - Controls the horizontal synchronization of the display.

VERTICAL LINEARITY - Controls relative height of first and last display lines.

HEIGHT - Controls height of total display.

VERTICAL HOLD - Controls the vertical synchronization of the display.

CONTRAST - Controls character display brightness.

Figure 10. Operator Control Listing

FOCUS _~MODE INDICATOR
WIDTH

HORIZONTAL LINEARITY

HORIZONTAL DRIVE

VERTICAL FEEDBACK

VIDEO AMPLIFIER PEAKING ADJUST-
MENTS)

HIGH VOLTAGE ADJUSTMENTS .

LOW VOLTAGE ADJUSTMENTS ETX (END OF TEXT) SYMBOL” ~

PICTURE CENTERING }
Figure 12. Mode Indicator and End of Text

Figure 11. Maintenance Controls Symbol Positions

Mode .

Indicator Meaning

rE - Indicates that the DTU operator has depressed the Transmit (TX)
pushbutton and that the computer generated acknowledgment (ACK)
message has not yet been received by the DATANET-760.

Blinking - Indicates that an error was recorded during the last received mes-
Mode sage from the computer to the DTU.

Indicator

o Indicates that the operator has depressed the print (PRT) pushbutton
and that the computer-generated "ACK' message has not yet been
received by the DATANET-760.

L Indicates that the operator has pressed the local (LOC) pushbutton,
which places his DTU in the off-line compose mode.

R Indicates that the operator has pressed the receiver (REC) push-
button, which places his DTU in the receive mode.

Figure 13. Mode Indicators and Meanings

10

3. DISPLAY CONTROLLER

The Display Controller is a centrally located Page Print Controllers (PPC's) on an option-
equipment capable of controlling up to 32 re- al basis. (See Figure 14). The minimum
motely located terminals. operable configuration is one DCU, one DLC,

and one TMU; the maximum is one DCU, one
DLC, four TMU's, and four PPC's.

The Display Controller is composed of one
Display Controller Unit (DCU) which consists
of the Controller Cabinet and the Basic Con- BASIC CONTROLLER
troller; one Data Line Controller (DLC); a
minimum of one and a maximum of four Ter- The Basic Controller (part of the DCU) in-
minal Memory Units (TMU's); and up to four cludes the following functions:

Figure 14. Rear View of Display Controller Unit

11

Keyboard Entry Control partitioned in segments of character data so
that each segment is displayed on a differentThe Keyboard Entry Control logic is a data~~DTU.Thefollowingpartitioningconfigura-multiplexer which accepts inputs from the tions are provided:

DTU Keyboards. Each input from the key- } .
board is decoded todetermine if it is a com- » Eight segments of data which allow the
mand code or a data character to be stored. display of four 46 character lines on
Command characters are used to control the each of up to eight DTU's.
position of the entry marker, record in mem- ® Four segments of data which allow the
ory the DTU mode, or clear the entire dis- display of eight 46 character lines on
play. Data characters are routed to a loca- each of up to four DTU's
tion in memory corresponding to the char- :
acter position under the entry marker on the » Two segments of data which allow the
display. After each character entry, the display of sixteen 46 character lines on
entry marker automatically indexes to the each of up to two DTU's
next consecutive position on the display. ® One segment of data which allows the

display of twenty-six 46 character lines
on one DTU

Keyboard data from up to eight DTU's per
Terminal Memory Unit can be multiplexed by
the keyboard entry control logic. The key- Video Distribution
board entry logic will service up to 32 key-
boards simultaneously, where each keyboard The Video Distribution logic of the TMU ac-
is operated at a rate of up to 15 characters cepts data from the character generator of
per second. the Basic Controller and forms these inputs

into composite video signals to drive up to
eight DTU's. There is a composite video

Character Generator signal corresponding to each memory parti-
tioned segment described above.

A Character Generator is provided which con-
verts the six-bit character codes from up to The Video Distribution logic provides the
four Terminal Memory Units into a digital video blanking required to prevent a given
video signal for display. DTU's data from appearing on any other DTU,

and causes the presentation of each DTU to
be approximately centered in the middle of

Power Supplies the display screen. It also provides for the
display of an entry marker symbol on each

DC power supplies sufficient to power the DTU screen. The entry marker always ap-
functional units are provided as part of the pears over the location of the next character
DCU. to be entered. The entry marker takes the

form of a horizontal line whose length is ap-
proximately the width of a character position.

Master Timing System To make the entry marker easier to locate on
the display it flashes at a 3 to 5 cycle per

The Master Timing System provides sufficient second rate.
clock drive for all of the functional units of
the Display Controller. The Master Timing
Unit guarantees synchronous operation of each
functional unit with the system. DATA LINE CONTROLLER

The Data Line Controller (DLC) provides the
TERMINAL MEMORY UNIT facility to interface the Basic Controller to a

remote station or computer. There are two
The Display Controller has the capability of types of DLC's:
including up to four Terminal Memory Units
(TMU). The functional units of the TMU are 1) 1200 Bit/Sec - Half Duplex Asynchronous
a8 inion: 2) 2000/2400 Bit/Sec - Half Duplex Synchro-

nous

Bulk Memory
Both DLC's are compatible with EIA Standard

The Bulk Memory is a delay line memory RS-232A. Interface connections are made
which is capable of storing up to 1472 six bit through a single connector. A Longitudinal
character codes. The memory data can be Parity Check option is available.

12

1200 Bit/Sec Option c) An acknowledgment or negative ac-
knowledgment is awaiting transmis-

The 1200 Bit/Sec half duplex asynchronous sion.
option provides two-way, non-simultaneous teat
transfer of information to and from the DAT A- 9 A Lrnyieein yee has, not
NET-760 at a bit rate of 1200 bit/sec. The
interface is compatible with Data-Phone Mod- e) If theterminalis a pageprinter and
els 202C and 202D or equivalent. a previous message addressed to

the Page Printer Controller is still
being printed.

2000/2400 Bit/Sec Option fy) A DTUis not busy due to these con-
ditions if the message is an "ACK"

The 2000/2400 bit/sec half duplex synchro- response.
nous option provides two-way, non-simulta-
neous, synchronous transfer of information
to and from the DATANET-700 2%4 bit Lute Special handling of messages addressed to the
of 2000 or 2400 bit/ gee. The bit raie is se- Page Printer Controller is recommended to
lectable at the time of installation by choice achieve maximum usage of the printer. Mes-
of the digital data set. Transmit and receive sages addressed to the PPC will not be ac-
timing at the data bit rate is provided by the hoe al onl Tes comnlole ln:
digital data set when present or by the com- a "BSY' response should not be used to test
puter station when direct drive option 1s used. the PPC stzius.
The interface is compatible with Data-Phone
Model 201A and 201B or equivalent,

Transmission Frame Half
Duplex

Automatic Message Initiation START UP AND QUIESCENT TRANSMISSION
FRAMES. Atinitial turn on, assuming no in-

Messages may be automatically transmitted formation transfer has been requested by an
from a terminal without operator action as a operator, the DLC will time out the absence
result of certain conditions in a received mes- of a transmission frame from the remote
sage for that terminal. The conditions which station. When the timer runs out, the DLC
will cause automatic initiation of a message will initiate a transmissionframe onthe com-
from a terminal are as follows: munication line. The timer is set for 4.226

+0, - 0.266 seconds, exclusive of phone line
1) Completion of a received message con- turnaround time. The transmissionframe is

taining a Text Message (NUL) status composed of two characters, Start of Header
character. An acknowledgment mes- (SOH) followed by End of Transmission (EOT).
sage is transmitted.

2) Completion of a received message con- The completion of the received transmission
taining a detected error. A negative frame at either the DLC or the computer im-
acknowledgment message is transmit mediately causes the receiving party to ini-
ted. tiate a transmission frame in reply. When

either end has no information to transfer, a
» Completionof a received message con- simple "SOH" followed by a "EOT" consti-

taining a Negative Acknowledge (NAK) tutes the transmission frame.
status character. A retransmission of
the previously transmitted message is

iid, rycuiry INFORMATION TRANSMISSION FRAMES
(ENQ) character must be included any- ORL NAD YROM Dio, Price io irons.
wherein the tot of the TNAK® messure mission, and at the end of each individual

: message, a scan is made of all DTU's in de-
' Completion of a received message for scending order of DTU address (DTU-8 to

a terminal which is busy. A terminal DTU-1 and TMU-D to TMU-A) until one has
is busy if any of the following conditions been found with a request for message trans-
are present: mission. The scanner will remain locked to

a) The terminal is in the local mode. Li heoa all ivansmiticonditions have
b) A transmit or print request from a

DTUkeyboard has not yet been ser- The transmission frame will begin with the
viced. transmission of the selected DTU's message.

LS

After the message has been transmitted, the character should the memory segment of
scanner will be stepped once through all re- a following DTU having a transmission be
maining DTU's with smaller addresses in widely separated from the prior segment.
that TMU. All of the remaining DTU's with
smaller addresses in that TMU which have INFORMATION TRANSMISSION FRAMES
messages to be transmitted will have their ORIGINATED FROM COMPUTER. An in-
messages included inthe transmissionframe. formation transmission frame originating

; 3 from the computer may contain messages forAfter all DTU's with smaller addresses in y
the selected TMU have been scanned and/or DTU's in any or all TMU's. The order and
serviced, the transmission frame will be ter- number of messages 1) atransmission frame
minated by the generation of an EOT. originating from the computer may arbitrarily

be determined by the computer program.
In half-duplex 1200-bps DLC's (DLC-760),
all remaining DTU's of a TMU can be scanned
without injecting time fill between messages. Transmission frames are originated upon the
In half-duplex 2400-bps DLC's (DLC-765), a termination of a received transmission frame
single time-fill character may follow the lon- from the DLC. (Note: See appendices '"C"
gitudinal-parity character prior to the next through ""G").

14

4. PAGE PRINT CONTROLLER

The Page Print Controller (PPC) is an op- OPERATION
tional module which is designed to drive one
Model 33 or 35 Send-Receive or Receive-Only The operator prepares amessage for printing
Teletypewriter Page Printer, or comparable inthe same manner as for transmitting. When
equipment. the print (PRT) pushbutton is depressed the

mode indicator is changed to "P,'" and the
Each PPC module receives data inputs from message to be printed is transmitted to the
a TMU. The PPC utilizes TMU memory space computer. To identify the message as one to
normally allocated to a DTU. Therefore, for be printed, the status character for print
each PPC module included inthe Display Con- appears in the header.
troller, the maximum number of DTU's al-
lowed is reduced by one. The PPC is de- The computer buffers each print message it
signed so that it can be wired to accept data receives until the printer to be used is free
from any TMU and utilize memory space cor- to print the message. The computer ad-
responding to any DTU position. dresses the printer to be used in the same

way it addresses a DTU. The printer selec-
The memory space utilized by a PPC can be tion, by the computer program, should be
addressed and loaded by the computer in the based on the address of the DTU requesting
same manner that a DTU memory space is printout. Before the computer retransmits
loaded. Print requests from a DTU are trans- the messagetobe printed tothe PPC memory,
mitted tothe computer viathe DLC as a nor- the program can add labeling or other pre-
mal transmitted message. The computer programmed data to the message. At this
receives and buffers eachprint request mes- time the computer could be used for refor-
sage until it is able to retransmit it to the matting or editing of the text to be printed.
desired PPC memory section to obtain a hard
copy.

When the PPC processes a print message, it
Since the computer buffers the print request Sivissiih ine corinier indicated by {ho entry

marker position set up by the print message
messages, the computer program can be de- £ thes cotbGtor. 1 the cinrtt 3B
signed to generate print message labeling or oh Dulsr.. , © San oe
add other types of data to a print message to inn eognohoyngier intakeon sequoniia y trom

: Sn : memory, and at the end of each line of text the
closely fit the needs of each application. This : :)

: wed PPC automatically inserts a carriage return
allows the operator to proceed with additional : :
ove and line feed code to provide proper opera-

‘ tion of the printer. To facilitate linking or
separating print messages, the Page Print

The output interface of the PPC is the EIA Controller recognizes the "Blink" (BLK) char-
standard RS232A. Interface signals and out- acter as a special command. When inserted
put character coding are given in the Appen- in a message to a Page Print Controller, a
dix. Eachcharacteris bracketed by one start single Blink character stops the printer at that
bit and two stop bits. The output data trans- point. A double Blink code causes the PPC to
fer rate is 110 bits per second. generate a carriage return and line feed se-

quence and then stop printing.

MEMORY SIZE

Since the PPC is added in place of a DTU and When the DATANET-760 receives a print
utilizes a DTU memory section, its memory message from the computer, it will respond
capacity is equal to that of the DTU position with a non-text message in the same way it
itoccupies. Even though a single print mes- responds to normal information messages.
sage is limited to the number of text rows of For example, a print message received with-
a DTU memory section, continuous multiple- out error from the computer causes an "ACK"
row printouts may be obtained by joining suc- message to be returned to the computer after
cessive print messages under computer pro- the message has been printed. In this way
gram control. the computer program is notified of the fact

15

that the print message was received without sage, a "BUSY" message will be returned
error and that the printer is nowfree to pro- automatically to the computer. If a print
cess another print message. message is received by the PPC when the

"clear to send" line from the printer is off,
a "BUSY" message will also be automatically

If a new print message is received by the transmitted to the computer. See Appendix F
PPC while itis processing the previous mes- for format of message to PPC from computer.

16

5. ERROR CONTROL AND RECOVERY

While error conditions may be caused by many Reception of Mess age
things, this section deals only with errors H : E
caused by the transmission media. Equip- aving Fror

pen sles n the hw A message containing a valid DTU address
HE yee may be detected in error by any of the following

ways:and the computer is in both directions, the v
detecti f d thei t
5 Mt oh il SAL ecoNSLY ns 1) Detected lateral parity bad in any char-

acter

2) Receipt of any status character other
ERROR CONTROL AND RE- than ACK, NAK, or NUL after the ad-
COVERY AT DATANET-760 Tiostichavaticy

3) Receipt of any non-graphic character
It is assumed that the operator will wait for after the status character until the start
receipt of an "ACK" message for each infor- oftext character. (A non-graphicchar-
mation message transmitted to the computer acter hasbit 6 and bit 7 both equal to 0.)

De {ransrassion of un new information 1) Receipt of any of the following charac-
Re. ters after the STX and before the ETX:

Error conditions from which automatic re- BOH, STX, ACK, NAR, NUL; ior E01
covery can be made may be caused by any of 5) The loss of the Carrier Detected Signal
the following three conditions: from the Digital Data Set before the

end of a message
1) Absence of a transmission frame from ;
) the computer for a period in excess 8) Receipt of a new SOH after a SOH and

of the prescribed time, measured from beiore ihe BTX
the end of the carrier of the last trans- 7) Detected message error by an error
mission frame transmitted by the DLC detection scheme such as Longitudi-

2) Reception of a message containing a nal Parity
valid address and containing a detected
error If a DTU which is not busy receives a mes-

3) Reception of a message for a DTU which sage detected in error by any of the above
i= busy of the time Cf reception conditions, all of the following will automat-

ically be performed:

Absence of Transmission 1) An error indication in the form of a
Frame blinking mode indicator will be dis-

played tothe operator on the CRT dis-
At the end of each transmission frame orig- play.
inated from the DLC a timer is started. If 3 ; a ;

the timer should run out before a transmis-) a i ; ga ma be generated
sion frame is received from the computer, rin hs sg or bowie ofa
a new transmission frame will be initiated ih message to be transmitted
ty the DLC. e next time the DTU is serviced by

the transmit scanner.

Messages transmitted by the DLC and which 2} The DTU keyboard which was locked
have not been acknowledged to the operator during reception, is unlocked to permit
during this period will remain in the DATA- continued operator usage while the
NET-760 memory for available retransmis- "NAK" status message is transmitted
sion by the operator. back to the computer.

17

Reception of Message For time the DTU is serviced by the trans-
Busy Terminal mit scanner, indicating the message

contains text.
A terminal is considered "Busy" if any of the
following conditions exist at the time of decod- ?) The text of the message to be transmit-
ing the status character ina received message: ted will contain all characters between

ah the "marker" position on the display
1) The DTU is in the local mode at the beginning of the message to be
2) A transmit or print request from the transmitted and the "End of Text" sym-

keyboard has not yet been serviced bol on the display.

3) An acknowledgment or negative ac-
knowledgment is awaiting transmis- :
sion Reception of Message

t) A retransmission request has not yet Containing “ACK”
been processed

Reception of a message containing an "ACK"
5) Terminal is a page printer and a mes- status and containing no errors for a termi-

sage addressedto its PPC is still being nal which is not busy will cause the text (if
printed any-see footnote) of that message to be dis-

played to the operator as a visual acknowl-
However, an acknowledgment message does edgment of a previously transmitted message.
not cause a "BUSY" response since it does No message will be generated by the DATA-
not result in conflicts. NET-760 in response to an ""ACK'' message,

but the mode indicator" T'" or '"P" will be re-
Reception of a message for a "BUSY" terminal placed by "R' as an indication of the receipt
will cause a "BUSY!" character to be gener- of the "ACK."
ated in the status character position of a non-
text message to be transmitted the next time If the operator has not waited for acknowl-
the terminal is serviced by the transmit edgment and has changed to local mode, the
scanner. "L'" mode character will remain on the dis-

play. The keyboard is not locked at the be-

Reception of Mess age fangoie message if the status character
Containing “NAK” And “ENQ" '°

The computer may request an automatic re- :
transmission of the last text message received Reception of Message
from the DATANET-760 to recover a mes- Containing "NUL."
sage received in error. Such a message will

contain a '"NAK" status and an "ENQ" char- If aDTU which is not busy receives a "NUL"
acter in the text. status message containing no errors, the text

of the message will be displayed to the oper-
Upon completion of reception of a "NAK' mes- ator, and the following will be performed af-
sage containing no errors and which contains ter reception is complete:
an "ENQ'" the following will automatically be
performed: An"ACK'" character will be generated

in the status character position of a
'} The DTU keyboard will be locked until non-text message to be transmitted

the DTU is serviced by the transmit the next time the DTU is serviced by
scanner and the message is retrans- the transmit scanner.

milled. * The DTU keyboard will not be locked
Y A "NUL" character will be generated while the transmission request is pre-

in the status character position of the sent, thus allowing the operator use of
message to be transmitted the next the DTU.

It is recommended that text never be contained in "ACK' messages, since protection against
operator interference is not provided in this case.

18

DATANET-760 Response ERROR CONTROL AND
Priority RECOVERY AT THE

COMPUTER
When the transmit scanner services a DTU,
all message requests for that DTU are ser- Error control and recovery at the computer
viced according to a fixed sequence before is under program control, thus providing a
the transmit scanner advances to the next large degree of flexibility. The following
DTU. The fixed sequence is: discussion describes a recommended solu-

tion; however, the inherent flexibility of the
1) ACK message system provides wide areas for improvement
2) NAK message and sophistication.

3) Retransmission The computer should wait for an" ACK" mes-
4) BSY message sage from the DATANET-760 for each infor-

mation message transmitted to a particular
5) Text message DTU prior totransmission of a different mes-
6) PRT message sage to that DTU.

Keyboard Locking Reception of Message Having
The keyboard is electrically locked when a Error
transmit or print request is entered from the Co
keyboard. The keyboard is unlocked after If a text ("NUL'" status) message containing
the message is transmitted, without waiting @ valid DTU address is received in error,
for an acknowledgment. the computer will address a message to that

DTU which will cause the error message to
The keyboard is also locked at the beginning Pe automatically retransmitted from the
of a received message (before the STX) un- DATANET-7 60. If a number of attempts (de-
less the message is an acknowledgment. This termined by the program) are not successful
is because acknowledgment messages do not in obtaining a correct message, the program
contain text or entry marker movements and will transmit a message that will cause thehence cannot cause conflicts with keyboard~~Word"ERROR"tobedisplayedonthefirstdata entries. Thekeyboardis unlocked at the line of the DIU display, notifying the oper-
end of a received message. However, if a ator that his last message has not been re-
transmit or print request is still awaiting ceived correctly and that manual recovery
service, the keyboard is not unlocked. 13 necessary.

If a non-text ("ACK", '""NAK", "BUSY" status)
message containing a valid DTU address is
received in error, the computer will retrans-

Legal Addresses mit the last message transmitted to the ter-Messages which do not contain legal addresses~~minal.are ignored. For an address to be consid-
ered legal, the station bits must match the
prewired station address of the DATANET- .
760, the specified TMU must be present, and Reception of Message
the DTU bits must be allowable with respect Containing “NAR”
to TMU partitioning.

If a message containing a valid DTU address
is received without detected error, the pro-

Entry Marker Restoration gram should supply an automatic retransmis-
sion of the last message transmitted to that

During reception of a message, the entry DTU.
marker position is extracted and updated in
a separate register. If a detectable error
occurs, which will result in a negative ac- Reception of Message
knowledgment, the updated entry marker po- Containing “BUSY”
sition is not restored. Hence, a retransmis-
sion request (NAK) from the DATANET-760
can be satisfied by retransmitting the mes- The program will time out an appropriate
sage from the computer without injection of time and then retransmit the last message
additional entry marker positioning. transmitted to that DTU.

19

Reception of Message It checks all characters following the SOH
Containing Text (NUL) through the ETX.

The program will transmit an acknowledg- When the LP option is not present, an equiv-
ment message to the DTU and place the DTU alent character time is transmitted and must
in the receive mode. be received by the DATANET-760. Use of

all ones is suggested.

LONGITUDINAL PARITY
The LP character consists of eight bits. The

OPTION first bit of the LP character makes the total
a : i . ofthe first bits of every character, from - but

Longitudinal Parity (LP) option provides the not including - SOH, even. The remaining
function of longitudinal parity check and gens bits of the LP character make the total of their
eration on each message entering and leaving respective bits in the preceding characters
ihe DLC. even. (i.e., the first bit of the LP checks

all preceding first bits, the second all pre-
A single LP character is generated and in- ceding second bits, the third all preceding
serted into the message stream immediately third bits, etc.) The eighth LP bit is lateral
following the ETX character of each message. parity for the longitudinal parity character.

20

6. ELECTRICAL CHARACTERISTICS, CABLING,
AND ENVIRONMENT

POWER REQUIREMENTS of video information to the DTU, and one
cable for the transmission of keyboard data

Display Controller Unit frou: ithe DIU to he DCU.

The power source required is 105to 125 volts, For cabling distance of 1000 feet or less
60 cycles single phase. Power consumption between DTU and DCU, a direct connection
will be from 350 watts to 750 watts, depending by coaxial cable is made. The cable type
on controller configuration. required between the DCU and the DTU for

distances of 1000 feet or less is RG59B/U
(0.242 inch O.D.).

Display Terminal Unit
Up to four receive-only monitors may be

The power source required is 105to 125 volts, connected on the video distribution cable, in
60 cycles single phase. Power consumption addition to the DTU. The receive-only mon-
is 200 watts. itors are connected in series from a jack at

the rear of the active DTU. A switchable
termination resistor is provided on each re-

UNDERWRITERS ceive-only monitor. The termination re-
LABORATORY sistor must be switched in at the last monitor
REQUIREMENTS riheiaham,

All materials meet or exceed UL standards
for fire and shock hazards. Where UL list- ENVIRONMENTAL
ings are available on material and/or compo- CONDITIONS
nents, the listed items are used in preference
to non-listed ones.

The DCU will operate in normal office and
factory environments which meet the follow-

RADIO FREQUENCY ing conditions:
INTERFERENCE

Room ambient: 65°F (18°C) to 85°F (30°C)
The DATANET-760 meets the applicable FCC Room humidity: 20% to 80% relative
specification, part 15, Incidental and Re- No condensed moisture or extremely dust
stricted Radiation Devices, for suppression laden or corrosive atmosphere.
of radio frequency interference.

The DTU will operate under the following
conditions:

CABLING
Room ambient: 40°F (4°C) to 100°F (38°C)

Information transfer between a DTU and the Room humidity: 10% to 90% relative
DCU is accomplished by use of two coaxial No condensed moisture or extremely dust
cables. One cable is used for transmission laden or corrosive atmosphere.

21

APPENDIX A
COMMUNICATION LINE INTERFACE SIGNALS AND PIN

ASSIGNMENTS

PIN FUNCTION

' Protective Ground
Transmitted Data
Received Data
Request to Send
Clear to Send
LINE 6p
Signal Ground
Data Carrier DetectorSOURCE ?

1
1
1

1
L Transmitter Signal Element Timing*
L
| Receiver Signal Element Timing*

1:
20 Data Terminal Ready
21

2% PHONE RMS |Né
24
25

*2400 Baud Synchronous Data Transmission Only

29

APPENDIX B

PAGE PRINT CONTROLLER SIGNALS

PIN SIGNAL

I PROTECTIVE GND
TRANSMITTED DATA

REQUEST TO SEND
CLEAR TO SEND

SIGNAL GND

0 DATA TERMINAL READY

22
23
24
25

23

APPENDIX C

TYPICAL HALF DUPLEX TRANSMISSION FRAME

SEQUENCE

DATANET-760 Transmission Frame Computer Transmission Frame

Initial Turn On

Time Out

SOH Quiescent
EOT Transmission Frame

. LLL LINE TURN AROUND 1l1//
SOH

EOT
LLL LLL
SOH

EOT]

[I [ILL
SOH

EOT
[//// LLL
DTU"
MSG
DT U4 Information
MSG Transmission Frame
DTUS for TMU #1
MSG (see Appendix D)

to EOT
i IT

DTU9
MSG
DTUS8
MSG
DTU31

Information MSG
Transmission DTU2
Frame from MSG
Computer Station DTU23
(see Appendix D) MSG

DTU17
MSG
DTU10
MSG
EOT
1/1) ftio

2 [LLL
tis DTU24

MSG
DTU18
MSG
DTU17
MSG

Soa DEOL
tis 1/1] /////

DTU3
MSG
DTU7
MSG

i 16 EOT
oe TL ST

SOH mE ———

tg EOT
oy eh /////

DTU4
MSG
DTU24
MSG
EOT

| SIT20

95

APPENDIX D

INFORMATION TRANSMISSION FRAMES

From DATANET-760

Syn*
Syn*
Syn*
Syn*
SOH
ADR (DTU 7)
STAT (NUL in text message)
A \ space codes -- reserved for future use. Always transmitted by DATANET-760.
STX
Text
ETX
LP (Longitudinal Parity - all ones if not present)
Syn*
Syn*
Syn*
Syn*
SOH
ADR (DTU 4)
STAT
FC1
FC2
STX
Text
ETX
LP
Syn*
Syn*
Syn*
Syn*
SOH :

ADR (DTU 3)

STAT oe Format (from DATANET-760)FC1
FC2
STX
Text
ETX
LP
EOT

*Syn used only with synchronous DLC's.

From Computer
(same as from DATANET-760 with the excep-
tion of the "FC1l, FC2'" space codes - which
need not be sent)

26

APPENDIX E

MESSAGE FORMAT FOR REQUEST

FOR RETRANSMISSION OF MESSAGE

RECEIVED IN ERROR BY THE COMPUTER

SO.

Display Terminal Address

NAK

STX

PR - (This may be any other sequence of marker control characters which will move

oe on the CRT back to the beginning of the message to be retransmit-

ENQ

ETX

If a number of attempts (determined by the program) were not successful in obtaining a cor-
rect message, the program may transmit an error message with the following content:

SOH

Display Terminal Address

NUL

STX

PR

E

R

R

Oo

R

FTX

~H

17.

APPENDIX F

FORMAT FOR MESSAGE FROM COMPUTER

TO PAGE PRINT CONTROLLER

PPC ADDRESS Selects which printer is to be used. The fact that a message is ad-
dressed to a PPC indicates that the message is to be printed.

NUL

STX

FORM FEED This character is not stored in the PPC memory but at the time it is
received, it clears the PPC memory of any previous message data
and starts the new entry at the first character position in memory.
This character would not be present if a portion of the previous print
message is to be retained and reprinted.

n

it to be printed

T

BLINK When received, this character is stored in the PPC memory as a nor-
mal data character. When the PPC is transferring data to the printer
set and this character is read from memory, it is an indication to the
PPC to stop printing action with no further motion of the print car-
riage. Two blinks in succession stop printing and cause a carriage re-
turn and line feed. If desired, the program may format the print mes-
sage with no blink code for full page printouts. In this case, after the
last character position of the memory is printed, carriage return and
line feed codes are generated to the printer and then printing stops.
Using this capability, a continuous printout of many lines of text can be
programmed witha series of print messages. For example, those print
messages in the series which are full page messages would have no
blink codes inserted. Those which have less than afull page of text lines
would have a blink code in the first character position on the line fol-
lowing the last line of text, or two blinks in succession after the last
character to be printed on the last line. Thus, each message in the
series would always end with a carriage return and line feed. The next
message would then start at the beginning of the text line following the
last line of the preceding message.

PAGE RETURN This character is not stored in memory when received. It starts
printout with the first character position in memory. Printout can
start with other than the first character if desired by use of a suitable
entry marker position sequence.

“OH

ETX

DATANET-760 RESPONSE COMPUTER RESPONSE TO
COMPUTER TRANSMISSION IF MSG, RECEIVED () DATANET-760 MSG:

(Good)

A OID = 23 < 8l5)8 AEE
(Information Msg) an —

x EEE : 5] [= 2 | eM Xa, Retransmit Computer NnH OO Ey=z 2 2 br Rp K) |- 7 a : P| Le B||HInformationMessage>S. - ” =>

(While Term Busy) Oo <Tm 122 Io Jot] 22J20ARetransmitComputeri‘OR 200|H-InformationMessageAfter4=R |< [Ax] HH|wn]|HA
Wait Period m

) ;
: ;

gm = J
nD 1 og

- COMPUTER RESPONSE IF DATANET-760 RESPONSE Mm z 2S DATANET-760 TRANSMISSION MSG. RECEIVED (__TO COMPUTER MSG:_073a gx
mn > 0{Good)

: y No DATANET-760 Reply. n.0
2 a 5 A Move "P" or "T" mode changed y Mm® |< |< |w| Marker|®to"R".("'L'"notchanged);4r

{Information Msg) (In Error) i 5
- 4 5 AE 8 a a ge - = we [Move aot x n, Auto Deiranant pDATANET- m-We 8 2 fen 3 gaze 10 5kof Z|5 | 760 Information Message nN

or Te Pr Messages (In Error Many Times)
or Information Messages | yi rem Vv Operator Retransmits

222 if WERE « [E]y) DATANET-760 Infor-Rl |Z lw! MH mation Message

NON E

APPENDIX H

CHARACTER SET FORMAT

2) | on
b6

b5 :

b4 b3 b2 bl
0 0 0 0 - on 0 @ ! Pp

0 0 0 1: A Q

Dd Es oh RE

 PYRESO EEE,
0 1 0 i % u
DS vd oo nly
golpte. b 2 Ww

Lt a 3 »
1 nN he nz

ot BL
. : : 1 Z,

ee lB
Ha
! 1 pT

1 © 0 | T

- Character for Storage - Combinations not interpreted

. Commands (not stored)

30

CHARACTER SET LEGEND

ag - Null. Used as a status character in message header to indicate the message
contains text.

SOH - Start of Header

STX - Start of Text

ETX - End of Text

EOT - End of Transmission

ENQ - Enquiry. Used in conjunction with NAK as subsequently described.

ACK - Acknowledgment. Used as a status character to indicate that the last mes-
sage for the specified terminal was received correctly.

BSY Busy. Used as a DATANET-760 status character in the message header to
indicate that the last message received was addressed to a Busy terminal.
A terminal is Busy when it is under local control or has a message waiting
to be transmitted.

r r Print. Used as a DATANET-760 status character to indicate that the mes-
sage is to be printed. The computer then re-addresses the message to the
PPC.

NAK Negative Acknowledgment. Used as a status character in message header to
indicate that the last message was received with a detectable error.

BS - Backspace marker one character. When the marker is at the left edge of the
page, subsequent backspaces have no effect.

LF Line Feed. Moves marker down one line. When the marker is on the bottom
line, a line feed moves the marker to the top line without changing character
position.

FF Form Feed. Clears memory, erases display, and page returns marker to
the top left character position.

ton - Carriage Return. Returns marker to the leftmost character position. When
the marker is at the left edge of the page, subsequent carriage returns have
no effect.

IL F Reverse Line Feed. Moves marker up one line without changing character
position. When marker is on top line, subsequent RLF's have no effect on
the marker. Character position is never changed ‘with this command.

3 Forward Space marker one character. When the marker reaches the end of
the line, another Forward Space causes generation of a Carriage Return - Line
Feed.

- Page Return. Returns marker to top left character position without erasing
display.

A

*R%

Ck

Li

PR

31

CHARACTER SET LEGEND (CONT)

gl ~ Synchronous Idle. Used in synchronous transmission to obtain character syn-
chronization.

SP - Space. Stores and displays a '"Space' character.

BLINK + Causes all characters between Blink character and the next space character
(or end of line) to Blink. When inserted in a message to a Page Print Con-
troller, a single Blink character stops the printer at that point. A Double
Blink code causes the PPC to generate a carriage return, line feed sequence
and then stop printing.

SY IN

39

APPENDIX J

GENERAL CHARACTER COMPOSITION

1200 BAUD CHARACTER

START - S10P

BITO | mir1} BIT2 | IT 3 | BIT 4 | BIT 5 BIT 6 1 BIT 7 BIT S8*' BIT 9
Always \ Lateral Always
Space | CHARACTER CODESET Parity ; Mark |

2400 BAUD CHARACTER

* Even for 1200 Baud, Odd for 2400 Baud.

ADDRESS (ADR) AND STATUS (STAT) CHARACTER COMPOSITION:
: EE rsBT|BIT;BI?|BIT|BIT|BIT{BITADDRESS CHARACTER:

p= | <r & T- :D | Lo | T ¥y 18] 5 DDD are DTU designation bits. Up to 8
= DTU's are allowed per TMU. TT are

TMU designation bits. Up to 4 TMU's
are allowed within a DATANET-760. SS
are Station Designation bits. Station Bits
of DATANET-760 are factory wired as
11.

STATUS CHARACTERS:

Cc oS 0 | 0 | 0 0 NUL. Message contains text
| Py | | BSY. Terminal was busy when last com-

puter message was received.
(Valid in DLC originated messages
only.)

f «- ~ ACK. Last message was received cor-
rectly.

9 | 0) NAK. Last message was received incor-
rectly.

Cl 0 PRT. Message is to be printed. (Valid
only in DLC originated messages.)

All other combinations not used

33

APPENDIX K

ALLOWABLE DISPLAY TERMINAL ADDRESS BITS

VERSUS TMU PARTITIONING

TMU Partitioning Allowable DTU Address
Bits (b3, b2, bl)

1 DT 000 (DTI)
(26 Lines)

2 DT's 000 (DT1)
(16 Lines each) 100 (DT2)

4 DT's 000 DT)
010 (DT2)

(8 Lines each) 100 (DT3)
110 (DT4)

5 DT's 000 (DT1)
001 (DT2)

(4 Lines each) 010 (DT3)
011 (DT4)
100 (DT5)
101 (DT6)
110 (DTT)
1a (D'T8)

24

INFORMATION SYSTEMS DIVISION

GENERAL &3) ELECTRIC

: v

oe ’ Ai’ 2 : CC: MGR. __ SALES DEVELOPMENT
— :

AY
|

REQUEST FOR NON-STANDARD PRICE QUOTATION

DATE _~1 August 1967

TO: MANAGER, PRODUCT PLANNING

cusToMER: Artificial Intelligence Group - MIT

SPECIAL PRODUCT NAME: New D/N-760 K/E and Display Terminal Unit

PURPOSE: To replace the standard keyboard and display terminal unit that is
concurrently in use with the D/N-760 & PDP-6 located in the Artificial Intelli-
gence Group's laboratory at MIT.

DESCRIPTION:
(Use additional pages as required. Reference any attachments. Include block diagrams if appropriate.)

Solid State keyboard and accompanying display terminal unit. {This is the
new keyboard which is being developed for the D/N-760 and is presumably
available 1st quarter '68.

DATE QUOTATION REQUIRED:

An order can be expected for this non-standard product if the monthly rental does not exceed $ ____or the sale price does

not exceed $§ = .

REQUESTED BY: Dominic &, Talone SALES REPRESENTATIVE, DIAL COMM 8"R02-8127

APPROVAL: DISTRICT MANAGER DATE

APPROVAL: REGIONAL MANAGER DATE

FOR PRODUCT PLANNING USE IDENT. NO. __

DATE RECEIVED: DISPOSITION:

CK 246 (10-66)

CC: MGR. _ } SALES DEVELOPMENT

REQUEST FOR NON-STANDARD PRICE QUOTATION

DATE 2 August 1667

TO: MANAGER, PRODUCT PLANNING

custouer: Artificial Intelligence Group - MIT

SPECIAL PRODUCT Name: Data Line Controller {DOLC-5) for D/N-750

PURPOSE: Present bit transmission rate of the DLC located at the ATIGs laboratory
is 24,00 bps. Customer has requested on many occasions that the bit rates
be increased.

DESCRIPTION:
(Use additional pages as required. Reference any attachments. Include block diagrams if appropriate.)

The new DLC=5 with a 50.000 BPE rale could be incorporated by using the
same terminal memory units & basic controller. All changes would be made
on the back panel wiring. It is. necessary for Phoenix to permit Oklahoma City
engineering to release presently available DILLC-5 performance specifications.

DATE QUOTATION REQUIRED:

An order can be expected for this non-standard product if the monthly rental does not exceed $ or the sale price does

not exceed $,

REQUESTED By: Dominic &. Talone SALES REPRESENTATIVE, DIAL Coy g* ROR-8127

APPROVAL: 3 DISTRICT MANAGER DATE

APPROVAL: REGIONAL MANAGER DATE

FOR PRODUCT PLANNING USE IDENT. NO. ___

DATE RECEIVED: DISPOSITION:

CK 246 (10-886)

| (L/¥

¥-3 53~ 3), ConNnECT lon
. NiAGRAM 3

Do I A Ir WE wf Fi
(pe2ene * ChnsS. Gab | CHASES Gab

XM: DATA |. | xmi+ BATA
Rev. Bata | 7 | Rev BATA
REQ. Te STND | | REQ. To Send
CLR. Te SEND] < 2 CLR. Te Sewud

bara SET ROY. 6 - | DATA ser Rby
Sie. GND. 7; — 7! Sie Gab

CarR. BET | ¢ Se 1 CaRr. BET

BaraTERM Rby' 2 ~————120, DATA TERM RDy
| ra Le lr Sr

= ml ——

ITew oa ec i cats —- -—-—j2!

3 a
wires 1 17 2) ANB 22 ARE
OPTIaNAL , Fo USE WHEN TIE PaiuTS

Fer. ALL ConbutToRS oF IZ Ceubd. CARLE ARE NEEMED

“BERET sreeGENERALGHELECTRIC
ce” FRACTIONS DECIMALS ANGLES CHECKED } _ DEPT oc
€s - - - a ADAPTER (CABLE

ALL SURFACES J FV Daraner Tbe DLC Teo
-L ATL. ms Cal DNATANET 3o/ComPuTe R - Direc TIESIZE|CODEIDENTNO.;BL: e| tS Bo

SCALE |SHEET =n

Ld

Ep

CJ 2

a

= #

- 43B bf Zoo PI
_ EncH End

USE 59C bLoB® 38s Py
12 Compete’ CABLE

or. *20 AWG STZANbED
i } rP2

zt |bLENGTH Sern]
: x= | Fr

bR 25S (Femace)
Qeninecvor APPRoPR ATE
4 Hoeb TAB [Rom CHASS. Gi
FRem 5acC bol 407 P23 XMIiT. Da
59¢ 603 36! MARKER Syrah Rev. Ba
EAch END REQ. Te S

CLR.To

Darl Xr
Sie. GN
CARR, Di
DATA TERM

=
NoTES: I CABLE 1S SYMMETRICAL

HENCE PPI And P22 MAY
RE INTERCHANGED.

CABLE MAy ALSe BE USE)
Fer. DIRECT CowNECTION oF
DATAMNMEY "He PPC To TELE-

TYPEWRITER (\F Try .%
EQuirred with “EIA InTERFACE"
CSNNECTOR Corb. THIS APPLIES

} ONLy Te PuRCHASED TELETYPE -

: WRITERS. SiMCE TTy'a LErseEd
Frem Bell Sysrem usually
ComnTAI INTEGRAL [03G Dara SET,

TECO~-
TECO
TUB, BECSS

3

13
TEC

TECO
3,2ECSS
IEK31USS
3,ZEC3$S
3EK3TUSS
33

L$SDDT
3%

D31S

D$DDT
3%
340003
J$DDT
3%
100! MOVEI 1,1282
(21! CONO 750,222
102! TONSO 752,180
133] JRST .-1
1G4! MOVE 2,(1)
135 JUNPL 2,274
(06! DATAD 758,2
{AT JRST 182
1181 ZZ MOVEI 11,1008
7Z+1! JRST 182

1800! L
1201! | 60XXX 160
18021
1003! 2
1204! 106
1205! 11XXX OXXX 117
1 206! 137:
1B37! id

1013!

Table 7~1
.Memory Bus Signals

SYSTEM
wODULEpi. oN] MEMORY CABLE * 1 MEMORY CABLE #2

PN a i. ey re Brel. erperien — est re

w ADR ACK + | MADR ZZ(N MBO 0 > | MBO 18 +bADRS @——— MADR 23 (1) ——a MBO 1|ndMBD19“PpWRRS eR MADR 24 (1) MBD 2 ¥ “ip MBO 20 Pp
PARITY + MADR 25 (1) MED 3 | «> MBD 21 Grd
REQ CYC - MADR 26 (1) MBO 4 © «> MBD 22 «>

MADR 22 (0) ~- MADR 27 (1) MBD 5 «> MBD 23 |, +b

MADR 18 (0) MADR 28 (1) MBD 6 +> MBD 24 >
MADR 18 (1) MADR 29 (1) MBD 7 — MBD 25 Gt
MADR 19 ©) - MADR 30 (1) MBD 8 .— MBD 26 Gr:

Ad 84 cs 04 Ad B{ ct 04
N) 0 MADR 19 (V) a MADR 31 (1) a MBO 9 Gp MBD 27 Gp
OE MADR 20 (0) —— MADR 32(1) =——¥ MBO 10 +“ MBO 28 «—>
R) H MADR 20(1) =—— MADR 33 (1) - MBO 11 «—p MBD 29 pp

) RK MADR 21% {O) a: MADR 34 (1) MBD 12 pp MBD 30 Gp

oo MADR 2) (1A MADR 35 (18 MED 13 dics MBO 31 es
= MADR 35 (0) - RD RQ MBD 14 Gp MBD 32 “+

MADR 25 (1A - WR RQ MBO 15 > MBO 33 “—p

' FMC SELECT IGN PARITY MBD 16 Gp MBO 34 Gp
mv FMC SELECT =~ - MADR 21 (NB — . MBD 17 «——p MBD 35 «>

CABLES MUST BE LOCATED NOTE:
ON THE LEFT OR RIGHT HALF

OF A MOUNTING BLOCK ——< FROM PROCESSOR

&—— TO PROCESSOR

PINS:

C.F.J,L,N,R,U ARE GROUNDED

THE FMC SELECT LINES ARE
PERMANENTLY FALSE IN PDP-10
MEMORY SYSTEMS.

als

CABLE SLOTS (4) DEVOTED TO EACH
CONNECTOR AS SEEN FROM WIRING SIDE

Table 7-2
- .Pin Assignments

W990 PROCESSOR CARD USEDPIN MPX CONTROL CABLE | WHEN MULTIPLEXOR NOT USED

a | -1ov ®
TON

E | REQ N — oh

H | Ack N o—

| MPX CLR —

Ml—w—e ©

DIRECTION.
—@ TO MULTIPLEXOR
©— TO PROCESSOR

NOTES. PINS C,F,J,L,N,R, AND V MUST BE GROUNDED

[) THE ~15V CONNECTION AND THE CLAMPED LOAD AT
PIN M SHOULD BE SUPPLIED AT THE PROCESSOR
END TO FACILITATE OPERATION OF THE PROCESSOR
WITHOUT THE MULTIPLEXOR

7

ok MO. 063-0
LRMWACLG

day © JA be . . Ty
Ens2 Systems Reduction Libr ary

IBM 7088 Principles of
Nanoperation

This manuel provides no informatien
whetsoever on the content and operptien
of the IBM 7069 Data Processing System.
It aoes, however, contsin detsiled
discussions of computer instructiens,
comrisnds und orders; data channel oper-
ations, input end output equipment, and
progremming errors for the 7069 dats
Perversion system, snd detailed specife
icetions for the IBSCREW system, the
STUITER langusge, and the STRETCH/YARN
modifications.

This manuel, together with the IBM
70¢9 Model II Data Perversien System
bulletin, Form A69/6969, is to be used
6s & reference for the 7069 II system.
Compatibility of like 7069/706911 irstr-
uctions and operatiens cannot be assured,
especially if these operstions and instr-
uctions sre employed as stated herein,
nor can we assure you ef anything else
if the power switch is en.

URE ptteisriomts pages isan rarsear a’ pr

er bow 2%. 0 *
[BI i ’, fie i Red 1 sp

a ao
== ipa

NG ;
© FIRE we or

RE Ti = i

; et scofl 0 ERGE OF
hs -« Oo proven miasht rr pepe

a al Je uy sora”

LOM 706 DpAra PerueRSION SYSTEM

IBM 7069 CATA PERVERSION SYSTiM

she increcred demwnds for precision, spead ond versatility made by
re new wnoration of computer hackers calls for & now fenerstion of
vamputer concelved and douigned ror grovter hecking efficiency. The
Lid 7009 Dita PLEVERSION SYSTIX fills tho neod for an tbsolutoly in-
destruet: blo machine bull to stand up to the rigors of norpel use by
IT vaderygreduates. Unfortunstoly, in order to achieve thls, all evn
Fonents and inutructions which schieve eny useful end mernigful oper tions -
hed to be scerificed. The 7009 1s {industry's snswer to the rising tide
of wiility end efficiency which is currontly overrunning the date prog~ |
Ceuing field, a slant step backward in modern technology.

cXCTE EN FUN DANINTALS

©The IBY E9 Duta Pervursion Uystom is sbsolutely Incompatible {ty
ny otaer couivmont over designed by IBZ or eny other corporstion.
It ic ridiculously slow rnd executes most operations with ting-deley
relrys (LP0T). Features includes

FLIRTING POINT OPERATIONS (Hot and eold running tapas)
CLARING POINT QPLHATIOND
YIXATD BOLMIPLY
Livin, BY 78RD
wan ZLVISHAL LOSE UP ERATIONS
wiGIRIITIONAL SURFINDIR OPENATIONS
Qioo FLDICULOUSLY INCOMPETENT INDEX RIGISToN we
INLIRICT ADRESSES (Except where PFD or Firat Class meil only)

Core slorege rosists of (Dk helfeeaten apples in plug-boerd rickc., Ford
sengta is 1X bite or four BTB coded letters. Stendsrd and Substendard PO ge
remadng cosembler language is FlOP, standing for FAST*LOSE-OFILNTLED PROGRAM.
Tac wetions carried out Dy the sssexbler sre random end bear no rescublaince
LW try re:l sctions of uny loglesl mechine.

F100 D KINBEES

wha the computer encounters the instruction EFYX (enter fixed-point node),
the eccunulutor 45 fille with fast-hardening epoxy cement. Upon encounter
in: the instruction LFX (leave fixed-point mode), nothing is dons, since
it i: obviously izpossidle to remove epoxy. The assembler breaks down andrice.

£3. TINC-DQINT NUMBERS

Laterlnyg floating point consists in filling the accumulator and IR saith

tap water, or alternately, Charles River Crud. This helps te lubricste
the flip-fleps and makes fer faster operstiem. Overfiow sensing is handled
by means of a bucket which should be emptied periodically by the bullding
janitor.

REGISTERS:

THE ACCUMULATOR: 1s a fleating free-running cenglomeration-loaded
binery-tertisry sugmented working regleter, which has room for up te
three bits, er four standing up without crowding.

THE INDEX REGISTER: may be used for ineffective addressing, either
in normal no-hunds pigeon-holing steruge, er in fleating point double
ambiguity mode.

THD MQ REGISTER: will not be much help, since it got se little work
that it atrophied from disuse. It is usually asleep, but even when
pressed inte service it is ridiculeusly incempetent, and is best left
to its own devices anyway.

REGISTER FUNCTIONS:

TAGGING: 1s lots of fun; ene bit is chosen "it" and chases all the other
bits around in ring counter mode. Game ends when bit is accidentselly drepped.

MULTIPLE TAGGING: means, ss near as we can figure by Americsn League
rules, that player is out at base, except on foul, where umpire calls fer

& "de-over".

Many other operations are possible, and we're sure at least ene could
be found. There is alse a software routine for using the AC in cash
register mode, but this has already been adequately covered by your
standard IBM field service centrset.

A REILE DESCRIPTION OF THE STANDAKD OPERATING INSTRUCTION SET

INSTRUCTION FUNCTIONAL DESCRIPTION

EPC (Eruse Punched Card) —

ECS © (EAT Cards) digests object deck

PMT (Punch Magnetic tape) so

Fs4 (Fold, Spindle, Mutilate) equivalent to ECS

RWP (Rewind Printer) very handy fer typing errors

BSP (BackSpace Punch) will alse fill in accidental holes

RDR (Rotate Drum Right) ——

ROL (Rotate drum Left)

RRL (Drum Roll)

RPF (Raise Program Flag)

LPF (Lower Program Flag)

WPF (Vave Program flag)

LOAD/INTERCHANGE INSTRUCTIONS:

PCA (Place Complement in AC) (no kidding)

PXA (Piace Excrement in AC) bletch!

LCN (Load Coop Number) "Charge or cash?"

LTA (Load Teaching Assistant) Nelpleusnse

ZIP (Read Input tape inte Output tape) See "Expensive Wire' package
manusl

SHFL (Shuffle &nd Deal) takes AC, UQ, and XR, does two guick
riffles, cut, and desl ene around, in-
cluding dummy.

LOGIC AND BRANCHING INSTRUCTIONS:

INSTRUCTION FUNCTIONAL DECSRIPTION

BRI: (Brench on Randem Impulse)

EWN. (Brench en Rhy Not)

BAW (Branch te Aveid Werk)

BSO . (Branch on Sleepy Operater)BPO=(BranchenPowerOff)CLB=(ClearandBranch)POA (Proceed On Assumption)

CTH (Transfer Uncenditional) Caution; this is an extremely
sensitive machine, se be careful
what yeu say.

JLN (Juap if Loud Noise) Covered under government insecurity

STP (Halt en Red Indicater) Rev up AC and wait

PWC (Proceed with Cautien) —

STOP (!) Transfer directly te jail; do net
pass go; do not cellect §200

MRZ (Maniacel Random ZerO) will eventually halt by zeroing itself.

XND (Exclusive And) If net A and not B, then not.

FUR (Floating Unnormalized Randomize) AC over easy; MQ scrambled on toast.

DER (DeRandomized) (Universal diagnostic)

IFR (Instant Fleating Retaliation) zeros any location that dares to call
and disturb it.

ADS (AC down shift) World's enly double-clutch IO

2ST (Edit System Tape) " ee

Qe QQLR%

ARLTHNETIC INSTRUCTIONS:

INSTRUCTION FUNCTIONAL DESCRIPTION

Ci? (Clear If Zere) —

Xi (Exchange Exponent for Magnitude)

SST (Supress Trailing Significant digits)

AAC {Add And Clear) ae

CAC (Clear and ADD, then Clear)

CHS (Change Sign) Repleces cute IBM 'think' sign of
the week

CHSN (Check Sign) Endorses power bill

PAY (wl) Deposits an additional 35 cents for
next three minutes.

FDV (Fissien Divide) Machine splits inte two 1401's, three
desk calculaters, and an abacus.

FILE SUPPLIMENT 7069-1BSYS-001

standard operating systems puckage descriptien

THE MONITOR: Supervisory Centrol of Revised Entry Nork (IBSCREW):

The 7069 Monitor/Operating system IBSCREW provides a variety
of software optiens te the user, sllewing him the ultimate flex-
itility in selecting optimel less modes. Services provided by
IBECREW include sutomatic job stacking and skipping, input-
output buffering for optimum data perversion, punched card and
expensive wire emulation, a relocating loader with provision
for unnccessed ‘refugee’ and missing storage of programs, and
standard problem-failure oriented language.

The monitor has been designed for and around the special
herdwere features avelilable on the '€¢9, such as wired-in entropy,
the sutomstic process precrastinator, and the patented ceherence
filter.

IBSCREW control cards are readily recegnized by a 6-9 punch
in column l. In the card layout that fellows, underlined options are
these assumed by the operating system. For example, a card 6/9 IBOMB
wita no further options, assumes NOMACHINE, NOCORE, and NOPROCRAM.

USER (LOSER) LANGUAGE has been implemented in accordance with
the stending peliey of upwards, dornwards and sideways compatibility;
in &n attempt to, as it were, go FORTRAK-116 ore better, the new
lenswge has been christened FIVETRAN III. °°

The moniter: IBSCREW

IBSCREW
esta

¥

_ = : INTERNAL BASIC

IBOMB _3TB a BOTCH «7 “ TEHMINATION
TERMINATION BOTCHING

BOARD

IBCRUD IBFLOP IBFD IBM UNCHSyCm———_airDomtre(the leader) (the flop (the fivetran i’ (the card
dissssembler) three decompiler) handler)

col. field var field options field . .A@n:
i

o IBSCREW program ngme machine,” Jere? regres, returns
’ no machinejlne cerejino program) contrel

IBONB lose, immediate - imscrew te mon.
win,” later “4 ‘lscrew

IBTB pregram name go,] —|® go

IBTRY program name hope,” | (new) (never) re7 no hope] | (maybe)

IBCRUD program name optiens, os
- ne eptiens

IBFLOP progrem name optiens, call
’ no optiens disassembler

} IBFTD pregram name fivetran three
J decompiler

* These options are not avellable, new er ever.

actt

oR (he AE tr ha bb a « sentir
. Cpl gir ieee SRE Ty Shieh LeLis JAA Ai EYELID NIT TIC EUR PIIIRTL I JL De ti Bape

eras eb Shy a. oa
TE SatsStdfoSaabdl4

- GOSE: Lo pp

: rwio Eng bce sa, sop

TAR ya ar foosed Jie FS- Pu? &e ~w,

fap TEE AE Cm Ss ARE REE UR Ay YS pt dp ge a

FB AUNCY to Can
hil AREER | GIN Shy Pd ARR A hea | rere

. pa A Tria ~ ia Bs oe el Voi IE, Via pas

FCoP sakes. PECK in.
or Se Ea IT

Ital Hd for win ie-- A CH 0 rsSARS4PAPOTABB81pa_ em———————————————————.
EIOL TfFA E €

. el as—r WEIE — =
% IBFTD -
a d |

tt ASRL Le i

MET TE ES Bete 1 pf STM ad EASY PBR wag yyoTWeSrLE TRRY THREE
SAUNT EekTT ARRSETOTneASAPSSSesihJBaPedSIBFTD LOSE | Ru¥= AAAAAAAT...erAOU71878: | Noo

S 180MB | LOSE | CORE, MACHINE, LSCKE:

Fig. 1 = Sample deck structure

.

+ ro

TECHNICAL MEMO 7069-LISP-002

A Brief Descriptien of STULTKFR a5 & symbolic Language

STUTTER 18 the symbol manipulation language of the standard 70(9. The
basic cbject is the F expression, so named by programmers who had to use
Lt. Tais date structure uses bi-directional pointers. As every LISP cell
contains two unidirectional peinters, every STUITER cell contulns one
bidirectional pointer, thereby providing the same amount of infermetien.

Corresponding to LISP "atoms" are STUTTER "quarks". As everyone knows,
no one has yet feund the quark. Some semple F expressions sre diagrammed
in figure 1.

The Quark’ ‘7 Coiiinly‘ 2% Sry
(: *

The basic functions in STUTTER are:

cantr-- gets the object at which the argument peints.
It is similar te the LISP cdr.

quarkp-- t iff the argument is & quark

conf-« connects two quarks with a 2A
Example: (conf a,b) takes ‘the two
quarks #8 and b and returns :

lr ow

Note that the contents of a and b have
been lost.

{ne F expression may therefore be defined recursively (how else?) -as
either & quark or the conf of two quarks.

The most important innovation of STUTTER is the garbage collector,
wnich is called when free storage is exhausted, or when taere is no
rore free storege; this happens very often, since memory always costs
something.t What free storage there is usually gets exhausted quickly,
a3 stutter isa very frustrating program. High speed garbage collection
is performed by clearing memory entirely, since all that memory contains
is in the long run, garbage anyway.

Wore (or less) informatien on STUTTER may be feund in:

STUTTER 6.9 PROGRAMMERS MANUAL RPI Press (12 pp. $37) ils
STUTLER SES: ITS USE AND ADVANTAGES Confusion Centintal (10 pp.) iii
STUITER AND OTHER LOSES vel.l, no.€) Proceedings of the Cambridge Royal

} Verbal Fireworks Society uM. Wand et al.

1 OF course, the best things in life are free, which says something about
the desirability ef cemputers.

META BITS

The Project MAC PDP-6 will ,soon recieve a 262K core memory

from FTI. Yhe word %=mgxk will be 40 bits long, wheres the standard

_6 word length is 36 bits plus parity. This memo will describe

changes to the -6 processor that are being considered to allow

these 3 Meta Bits to become available to the programmer.

To clarify the need for processor modifications, let me

describe the memory interface as it presently exists.

MEMORY BUS SYSTEM

The PDP-6 utilizes a parallel bus system of memory inter-

connention. The memory bus wwiginates from the processor and

carries the following signals;
36 Data bits (two-way pulse transmission)
1 Parity bit (trated as a 37th data bit)

18 address lines

1 Fast Memory Select

3 timing signals
3 cycle descriptor lines

Each unit of the memory is attached to the bus, and a special

interface mohitors 4 of the address signals (high order), apd

the Fast Memory Select, and the cycle descriptor signifying a

processor cycle request. It determines the presence of a request

for that memory unit on the bus, and initiates a cycle. It is assumed

that this interface is internally connected in such a way as to assure

that each unit on the bus responds to a ult code of the four address
and one FM select line. ig

The fast memory select exists for a good reason. Normally, each

member unit responds to a fixed bit pattern in the top four address lines.

This means that each unit will consist of two *%14 or 16K words, and the

map from the address space into physical memory locations would look like

Figure 1.

THE WORST OF THE WORST

is JCL JUMP AND CLEAR AC
JCUR JUMP AND TAKE CDR

ve. SUBJN SUBTRACT ONE FROM BOTH AND JUMP IF NEGATIVE
SO0BJP

do SUBS«.s SUBTRACT ONE FROM BOTH AND SKIP (LEsEsAsGEsGsLaN)
AUBS «

De AUBJE ADD UNE TO BOTH AND JUMPE IF EQUAL(TO ZERO)
AUBJNSOBJESSUBJN

bo SK]PI EFFECT ADD GOES TO AC
/ o SKIPM AC GUES TO MEMORY
10. XCT Ns XCT BUT PC+N => P(
ii. PUSHI PUSH IMMEDIATE
12a LCAlee COMPARE WITH LEFT HALF
1S RCAl.. COMPARE WITH RIGHT HALF

Ld gor DECREMENT BYTE POINTERuel, DPBD
15. PMOVE DOUBLE WORD MOVE OPS
ic. -1" REVERSE BLT2(GOES FROM HIGH TO LOW)
17. RBLKI SAME

RELKO
2U MAKK HARUWARE MARK INSTRUCTION FOR LISP
ele NORM J6 B1T NORMALIZE
2a CNT COUNT BITS INSTRUCTION
ede FOPJ PaN USE ADURESS TU POP AC’?SL,SKIP OR OTHER RANDOMNESS
cdo LJMP JUMP THROUGH LEFT HALF
£5. i? JUMP IF EQUALSOTHERWISE TAKE CAR INTO AC+]
20 XM MEMORY T0 MEMORY TRANSFER
27 e MTP NsADR(P) TRANSFER ADK FO =N(P) (GROAN)
SU IMcid) TEST 8UT RESULTS T0 MEMORY
31 LAOS AOS LEFT HALF

LSUS
KRAUS
RSOS

Se MPUSH CLAC)=>C(C(E)+1=>C(E))
33 e MPOP CO(C(E)=1=>C(E))+1)=>C (AC)
Sd. MPUSHJ C(PC)=>C(C(E)+1=>C(E))} E+1=>C(PC)
SD. MPOPJ C(C(E)=1=>C(E))+1)=>L (PC)
SO. HERB HALF RIGHT TO BOTH HALVES

Hit
37 CLEARM ACs OLL C(E) GOES 10 C(AC) IF AC=/=0

MODE WHERE INDIRECT BIT MEANS BYTE OPERAND

Sl A ‘tj oO . A
5 . Aum? IF wp LHe Ae until Ac 1 GC

Er Otherwise elear c-
= he

U. FEDCBA GET BUSTED BY cof, wt comPLUMENT
BOTH of YoU. You ALWAYS suf OWT

& \ a & £ Ars Bo) {3 YI
> \ . » & Eh dd A Mi J As

; py } mem oe! i’

42, UR (- 3 » } _ " v | ' or N,

EC rR 7) rn saline ven Svge (Fey wah AC neaated
fd NNT L,~~ x 1B b > i? A |132, AOC . SOc dd ut roc owes -complemed

3

*

ry

May 28, 1964
A. Kotok

PDOP-6 MEMORY BUSS SYSTEM

One Memory can be connected to as many as four processors via the memory
buss system. Figure 1, attached, shows a typical system expanded to full capacity
with four processors (hence, four busses) and with four Memories Type 163C.

~ Each buss consists of four flat 18~conductor ribbon coox cables. These cables
carry all the necessary logic signals between a processor and whatever number of
N emories (up to sixteen) there are in the system. The signols carried by these cables
are described in "Description of Logic Signals”, attached.

The buss cables are actually segmented. That is, the four cables do not run
continuously from the processor to each of the memory controls. Four cables sun
from a processor to 4 connectors in one memory; four additional connectors casry
the 4 x 18 lines out of this memory to four additions! cables and on to the next
memory. Tle buss continues in like manner to the lust memory. F gure 2 illustrates
the buss system.

The buss system connectors plug info mating connectors on the handle end of
the special interface modules in the Memory. The 4 cables constifuting the buss
gach plug inte one of4 corresponding interface modules. The continuation of the
buss to the next memory control is from another connector on the handle end of each
of the some interface modules, os shown in Figure 2. The special interface modules
are:

cable | Type 1664
cable [i Tome 1665
cable iil Type 1665
cable IV Type 1665

Thus, the number of interface modules in each memory is equal to four times
the number of processors.

Cables | and [1] terminate with a Type 1032 connector of the processor. This
connector plugs into a Type 1901 mounting panel in the processor in the same manner
as a standard DEC system module, except that it mates with o male connector, Hence,
the female connectors that are nomally provided with o Type 1901 mounting panel musi
be removed from the 2 positions into which cables | and Il will plug. They are replaces
with two 22-pin male Methode connectors. Methode part number 130-12-MD6225.
These conneciors must be installed on 1/8" standoffe. Cables 11} and IV terminate with
Type 1031 right ongle connectors of the processor. These connectors mate with the
connectors an the handle end of Type 1665 modules which must be used in the processor
ro handle MB data

op Pp 6 nrg or:

Tn

Figure

’ A Z Zz

La G i a £ 3 Bieho
. st oe So3g far - a pore : raz F022)18 cond. coax ribbon cable 1 i ; . ? mcd

Cable if 2
; i #830,

} ; ea iam re “Hass £100|8 cond. coax ribbon cable, 1777 vw +378

/<

Gas] Cable Hi
/ Th . onbee [- 18 cond. coax ribbon cable : 1/022 | fru

. Read —

Cable iV
jo . i ; “vod
! gs i i - Ie. TRE -

-1 1 |B cond, coox ribbon cable Cd oo od . «£3 brorr ana ry.|moe.GEE1hoow~edjamrAEERnGenSeip=3ogBoseomememosswowmeswn©sem=
REN00 vr Jo prema i 177, Iicriony fia rma ys #43

Figure 2

Memory Buse System For On: Processor:

Page 2

A special mounting panel, the Type 1933, can be used in the processor to
permit plugging of the Type 1665 module. This mounting panel is twice the height
of a standard mounting panel and hes 2 positions for inserting modules of the Type
1665 size. The Type 1933 panel has, in addition, positions for plugging in 44
standard DEC system modules. Two of these 44 positions could be used for plugging
cables [and Ii,

Terminating plug=ins, type 1030, are used on the handle ends of the interface
modules of the last memory control on the buss, These plug-ins each contain 18
10G-ohm resistors to provide proper matching to the coax lines,

Figure 3, "14 Memory Address Lines” and Figure 4, "36 Memory Buffer Lines"
illustrate representative circuitry used with the buss system, The circuit requirements
for the buss system are further specified in "Bus System Circuit Requirements”, attached
Three tables are also included which list the coax wire assignments for cables I, 11, Ii]
and IV.

Processor Cove Memory Control Interface

14 Memory Address Lines

Terminating Resistor located on
RIBoN C.ORX Type 1030Termination Plug-in

TENSE wea AGRA wane SGI een cist 4 frm CURL) ese SSA eHGSL Game ffm i Ri PE ee

at me on GR MSHS NTS Gmaed Om GURND SAD enamd “ : ENS GTN SAG. JETS eur GRU MSGS GA ABA OB

jw —~ / 0
- —- 2

CME an 1 CA,

er ond ! ered” Je

— J ; nc i 3 :
; vd ere J i,

ey ve £ 7 J 5 ig

Vrresr micrnoey ow AdPST™ HICINORY ON LIE.
FROCE 550K bLrsie (OF WV fiemories)ey A WEES GENES WIRD GURSEY|Gmachdmss|eefoesroanowewavesesemenwwewrQomcannecommaswnatamaseeem ememaen Seeow GmITAnemer

14 MA lines are in coox cable lI which plugs into Processor with a Type 1032
connscior.

Connector Pin Assignments
«MA. Bit [22123124 25 l26 | 27] 2d 29) 30 31] 32]3334] 35

Fino. 18 | C[D [EF [H[K|L [WNP] T[U

Figure 3

Processor Core Memory Control Interface

3b Memory Buffer Date Lines
Temincting resistor To remlest] . :: grminating resistor locaied
located on Type 1030 Ribbon coax conductor wiltermination St . ee 50Type]030terminationplug=in_

2 - § 7 oe —"ETETEeEEE EAELeiai=:L000 a . 1000

CMB CM Bio

of 1 | : 1

Ki pulse

. RB 3 go
-) sense amplifi yo“one” level Sosy Ghplifter nse amplifier output,

: output, =v pulse |
input pulse

Pn select, =3v level “1 select, =3v level
1665 Pulse Transceiver 1665 Pulse Transceiver 102 Pulse Transceiver
Processor Pn Memory MO ._ MemoryMn

: 35 MB lines are in coax cables Hl and IV which plug into processor withCable |”,
4 Type 1031 connectors,

Connector Pin Assignmente
MB Bit | | ”
SON, ion lle - - bo

Sites - : . }@ i - = | Oo ~ pro. - §- 1. B |ate [€ 17) boi AT Ain

File,» 3LN de

Gore Memory Type 163C Interface With Processor

Deseription of Logic Signals

Signal Description

RQ A processor requests a memory cycle by esserting is RQ kine,
«JV {evel if @ memory cycle is not already in progress and if no other
Cable | processor of higher priority is simulianecusly requesting a
Pin F memory cycle, a memory cycle will immediately begin, If

another memory cycle & in progress, that cycle must complete
before the requested cycle can begin, If another processor of
higher priority Is requesting a memory cycle, that processor's
cycle will be executed first, The RQ signal must remain present
at least until an ADRS ACK pulse fs retumed to the processor
generating the RQ, at which time the requested cycle has begun,
The RQ signal must be removed immediately after the ADRS ACK
pulse is recelved af the processor, or a second cycle may begin,

ADRS ACK The return of an ADRS ACK (address acknowledge)pulse is fo a
~3v pulse processor indicates that the memory cycle that is beingrequested
Cable by that processor has been started and that the specified address
Pin B is being accessed, If the request is honored immediately, thas is,

if no other cycle was being executed when the request wos made,
the ADRS ACK pulse will be received by the processor approximately
200 nanoseconds after the RQ signal is generated,

RD BS An RD RS (read restart) pulse is returned io the processor af the time
=3v pulse that the sense amplifiers are strobed., The RD RS pulse is received
Cable 1 by the processor approximately .5 microseconds ofter the AD RS
Pin C ACK pulse.

WR RS A WR RS {write restart) pulse Is required by the Memory Control whenever
=3V pulse a split eycle Is being executed; that is whenever both RD RQ (read request)
Cuble | and WR RQ (write request) are asserted. In split cycle operations, the
Pin D write cycle will not start until WR RS ocours. WR RS can be sent from the

processor as soon cs ADRS ACK is received by the processor, or anytime
thereafier. However, if WR RS is sent surlier than the completionof the
read portion of the memory cycle, that Is, earlier then Sorammately Imicrosecond after the ADRS ACK pulse is received, the write portion of
the cycle will begin immediately upon completion of the read portion of
ihe cycle. #-RD RQ and WR RQ are both asserted, the memory timing
chain will stop upon eompletion of the read portion of the cycle providing
WR RS has not yet been received, Then the write portion of the cyile will

should nol Be sent To the emory Won only (RD RQ |
—enly asserted) or write only (WR RQ only asserted) cycles, :

Signal Wescription

RD RQ A processor requests a word from memory by osserting the RD
=3v level RG line. If a memory cycle hos been requested (RQ asserted)
Cable Ii and RD RQ is not asserted, the word which Is retrieved from
Pin V memory during the read portion of the memory cycle will not

be transferred to the processor vio the 36 MB lines, To accomplish
the transfer of the word to the processor, RD RQ) must be asserted
when RG! I asserted and can be tumed off any time after ADRS ACK
is received by the processor.

WR RQ A processor requests to write a word info memory by asserting the
~dvrlevel WR RQ line, If a memory cycle has been requested (RQ asserted)
Cable If and WR RQ is not asserted, the word which is retrieved from memory
Pin W during the read portion of the cycle will be read back into memory

during the write portion of the cycle, If both RD RQ and WR RQ)
are asserted, the Core Memory Buffer in the Memory Control is
cleared 0.20 microseconds after RD RS is received by the processors.
The Core Memory Buffer will be ready to receive the new word from
the 356 MB lines fo be written into memory during the write portion of
the cycle after another 100 us. WR RQ must be asserted when RQ is
asserted and con be turned off any time after ADRS ACK is received
by the processor,

SEL The six SEL (select) line/paits specify which of up to sixteen memory
gnd modules are being addressed. These lines commonly carry the
levels complementing logic levels of the five most significant bits of the
Cable | memory address register and whether this address 1s<205 , The
Pins IK particular 6-bit code which a memory module responds to is determined

by jumpers in the memory interface module Type 1654, The levels on
the SEL lines must be established 50 nanoseconds before RQ is asserted
and can be reset or otherwise changed any time after ADRS ACK is
received by the processor.

ADRS The fourteen ADRS (address) lines specify one of 16,384 memory
~3v level locations to which access is to be mede during the current cycle,

Thus, in PDP=6, these lines transmit logic signals MA22(1) =
MA25(1), The levels of the ADRS lines must be established by the
time RQ is asserted and con be reset or otherwise changed any time
after ADRS ACK is received by the processor,

MB Information is tronsferred between the processor ond the Memory
~3v pulse Control via the 36 MB lines. A word is retrieved from memory and

is transferred from the memory to the processor over the 36 MB lines
coincident with the occurrence of the RD RS pulse. If the processor
is requesting o write only cycle (RD RQ not asserted) it must provide
gating so that it does not respond to the signals on these lines, During

poe a

signal Description
a read-write or a write only cycle, a word must be transferred
from the processor to the memory over the same lines not sooner
than .1 microseconds after RD RS is received at the processor.

Buss System Circuit Requirements

All level inputs to the Memory should be driven with Type 6684 bus drivers,
us shown in the accompanying diagrom illustrating the interface circuits for
the 14 memory address lines.

All pulse input to the Memory should be driven with a DEC 5 megacycle pulse
amplifier, such as the Type 1607. Ail pulse lines are terminated at the Memory
by 100 ohm resistors, as are all level lines.

All pulse ouiputs from the Core Memory Control must be terminated with a 100
ohm resisior to ground at the processor.

= CI

MEMORY CYCLE REQUEST <

READ REQUEST . LaganWRITE REQUEST4BENS.[1 WRITE 1

« — MODULE SELECTION IT4 (ADDRESS) ECsfn1waEZIg INHIBIT

PROCESSOR | =n FAST MEMORY jr MEMORY CONTROL CORE DRIVE
1 ——f SELECTION eet SENSE CKRTS

w___ ADDRESS ACKNOWLEDGE 2

READ RESTART {___ STROBE SENSE AMPS ¢-17

WRITE RESTART Re 1 STROBE SENSE AMPS 18-35+PAR

_ pamITY BIT

I CELL ADDRESS dhCELL ADDRESS 4} (MEMORY ADDRESS) | — «

ol A 37 DATA (MEMORY BUFFER) .

37 SENSE AMP OUTPUTS 36+PAR

PROCESSOR/MEMORY INTERFACE MEVAEY CONTE /DRIvE TuTs
INTERFACE

MEM. BUS

PIN| : CABLE! | camie*? | CABLE 2% 0 caBLE 20
A GND GND GND GND
© ADDR ACK — NMA ~~ MB A (, MB 18 1) —*
> RDRS =--+ MA ME 1 IMB 19 (1) —»

WR RS -— MA MB 2 7 MB 200) —>
BARD no MB 3 1 - vB 21 (D) —
* RATCYCLE - po MR 1 MB 22 (1) ——

 SPARE Bell MS) MB 23 () —»
GNID CT GND

MA 0 —e LM MB 24 (1) —»
hr T —-> MA N MB 25 (1) —

2 i NA Ne MB 26 (1) — +
Nol MA NH — MA i MB 27 (1) —+
IMAL (1) — MA IL Noo vB 28 (I — +
A MA2D @ — MA 33 Moo MB 29 (1) —»

2 or GND arn GND
TINA TD —o MA 34 (Y) NV oo MB 30 (1) —»

CM TT -» MAZE MM MB 31 (1) —-»
N ~-< MC RDRQ-<~ MZ MB 32 (1) ——>
het ©. -+~ MC WRRGQ—e MB!5Q - - MB33{) —

MA _ SPARE —¢ MB16() - + MB 34 (1) —
Zi=2 } - ~ SPARE MB17{) — MB 35 (1) —

“ND GND GND GND
(SOURCE 25) (SOURCE 2.20) (SOURCE 2E25) (SOURCE 2425) i

: > CABLE 1

Speen ot
» CABLE 2

> CABLE 3

: CABLE 4

October 19, 1965

To: Fabri-Tek People

Gary A. Anderson
1019 RE. Excelsior Blvd.
Hopkins, Minn.

on page 7 of memo entitled

PDP-6 MEMORY BUSS SYSTEM by A. Kotok
May 28, 1965

UNDER WR RS CABLE 1, PIN #D
(where appropriate)

change:
«+++ All references to Split Cycle to Write or
Split Cycle.

A WR RS (write restart) pulse is required by the memory
control whenever a split-cycle or write only cycle is being
executed; that is whenever WR RQ (write request) is asserted.
In split cycle or write only cycles, the write (memory rewrite)
will not start until WR RS occurs. WR RS can be sent from the
processor as soon as ADS ACK is received by the processor, or
any time thereafter. However, if WR RS is sent earlier than
the completion of the read portion of the memory cycle, that is,
earlier than approximately 1 microsecond after the ADS ACK pulse
is received, the write portion of the cycle will begin immediately
upon completion of the read portion of the cycle. IP RD RO and
WR RQ are both asserted, or WR RQ alone, the memory timing
chain will stop upon completion of the read portion of the cycle
providing WR RS has not yet been received. Then the write
portion of the cycle will begin immediately upon the occurence
of the WR RS signal. (In particular, the processor will have
entered the memory data, MB 0-35, as pulses on the memory bus
concurrently with the WR RS signal). The WR RS pulse should not
be sent to the Memory Control at all during read only (RD RQ
only asserted) cycles.

J. Holloway

October 19, 1965

To: Fabritek People

Gary A. Anderson
1019 E. Excelsior Blvd.
Hopkins, Minn.

on page #7 of memo titledPDP-6MEMORYBUSSSYSTEMbyA.KotokMay28,1965UNDER WR RS CABLE 1, PIN #D
(where appropriate)

change: |

es NEREVERmggiseleoteyppspamgrrrypseemequested
(yegenenadsschangesadlsreferences=po-read as=split
ovohemorawrtemonhy=oyeie)

CHANGE ALL Rercrences To SPLIT CYCLE TD ORTE oR SALT yee
A WR RS (write restart) pulse is required by the memory control

whenever a split-cycle or write only cycle is being executed; that
is whenever WR RQ (write request) is asserted. In split cycle or
write only cycles, the write (memory rewrite) will not start until
WR RS occurs. WR RS can be sent from the processor as soon as ADS ACK
is received by the processor, or any time thereafter. However, if

WR RS is sent earlier than the completion of the: read portion of the
memory cycle, that is, earlier than approximately 1 microsecond after
the ADS ACK pulse is received, the write portion of the cycle will
begin immediately upon completion of the read portion of the cycle,
If RD RQ and WR RQ are both asserted, or WR RQ alone, the memory timing
chain will stop upon completion of the read portion of the cycle
providing WR RS has not yet been received, Then the write portion
of the cycle will begin Immediately upon the occurence of the WR RS
signal. (in particular, the processor will have entered the memory
data, MB 0-35, as pulses on the memory bus concurrently with the WR RS
signal). The WR RS pulse should not be sent to the Memory Control at
all during read only (RD RQ only asserted) cycles,

J. Holloway

Notes on Displays

Jack Holloway

| This is a semi-technical description of one possible: display
system for AI-MAC. It Is an Yideslized® ome, and aliboush it
resembles the: SAIL display system, the combination and extent of the
herdware features envisioned may not be availesble from any particualr
penufacturer.

Since no strident and uncompromising claims sre intended
here, it is hoped that the reader can temporarily put aside his own
prejudices as to the relative merit of features, his urge to chop and
chisel, and participate in this daydrean. In general, these are
things ‘that I would find pleasurable or exciting to discover in
someone”’s prorosal.

1 favor a two-headed display system, consisting of severalrefresh vector—drawing displays (TRY 5) and -a multitude of raster
type displays. In my: opinion, the IPY’s sare 2 geperzfe and
indesrensible part of a display system, offering high resolution,
good looking characters and vectors, simplicity in Frogramming, and
the ability to handle rapidly changing displays. Furthermore, it is
important to have more than one or two such displays {gay ot least
6—8), because otherwise their software tends to be too expensive to
develop for the benifit recieved, and programs that use them are
restricted in usability. I think several DEC 0T-40"’s , Vector
General, SC delta-1, or in-house displays would be suitable here.

The raster system would be patterned after the Stenford ZIata
Disc s;stem, with several video channels connected throivrh a switch
to a larger number of monitors. I think it reasonable that a majority
of the video channels be character only display generators, and the
others 512x512 shift registers for graphics uses. In addation, some
number of analog sources can be selected at each monitor for viewing
ITV cameras, video synthesizers, or other sources of standard TV
video. The switch would allow any set of channels to be selected to a
particular monitor. Most users would probably find it sufficient to
use the character-only channels but any display could access a
graphic channel. It would protably be the case that the displays
would be driven by one or more PLP-11 computers connected to the
PIP-10"s with a direct memory-memory connection.

by

FEATURES

- The character channels ‘would each consist of EAM storage of at
least 86 by 42 characters. There would be a read-write memory shered
anong several channels that contained the bit-matrix definition of
the 128 character set. There would be a simple processor reading
PIP-11 memory that would fetch 16 bit words packed with two
characters and store them into the desired character position in the
selected charnel”’s character memory. The fetcher would interpret the
following format characters.

null- ignored, not written in character memory.
tab- spaces filled in until next tab position.
return— spaces filled until right margin and line advanced.
line-feecd- I would like to do away with this. but it

could be simulated (sigh).
~ rubout— special character (see below) In addition, the

fetcher would detect overflow off the right margin and either
wrap-around 10 the next line or iruncate the line depending upon
mode. This should relieve the software of the problem of reformating
the text grossly.

-Left and ‘right margin registers. Return would advance to ‘the next
line in the column specified by the left margin register. This allows
the software to partition the screen into separate pieces of paper
without treating the displayed text differently. Possibly a lower
line linit =2lso since if lines can wraparound it is difficult to
determine the number of displayed lines.

~The eighth bit of the character can te used to specify a cursor
(underline character). , or a bold character, or can be used with an
expanded character definition store to allov additional special
characters found in other character sets.

-Time-sharing features such as the rubout code which conditionally
displays a blob when a IOT controlled flag is on, to display the
user's run state. An additional marker in the upper corner displayed
on all consoles if the time-sharing system is detected down.

~Rubout with cursor bit is an analog see-thru character for
overlapped analog and text images. Allows the user to build a window
on a portion of the screem for synthesized or TV video.

GRAPHIC FEATURES

~In addition to the character channels, some number of shift register
memories with 512 1linés of 512 bits for each channel. The shift
registers would be organized to allow rapid access to any particular
line, and 16 bit transfers at near memory bandwidth.

-A memory driven display processor with character, vector, increment
modes that writes into a 512x512 RAM memory. This memory could be
copied into (from) any one of the shift register channels. This would
allow arbitrary character sets on any grarhic channel, plus a more
usable graphics feature than the current Stanford Data—Disc. .

~The ability to gang together channels to form a memory with 6 or 8
bits per point, driving a grey scale video synthesizer. This grey
scale memory might also be written into by TV camera, allowing the
program to access the data in the shift register without waiting for
the frame time of the camera video, recieving samples without need to
compensate for interlace, reduction in the memory. bandwidth
requirements so that semples with more bits can be.read without
critical high-speed channels, and possibly allowing several-frame
averaging to increase signal/noise ratios.

-Four 512x512 channels can be assigned to a 1024 line monitor to
provide extremely high quality graphics. This can be easily done by
sampling among the four channels at four times the normal bit rate.
The display processor could be arranged to normally assume 1024x1024
coordinates, rounded off when running into low resolution 512
channels. The display processor may even interpret the same command
format as the refresh type displays.

—yrovision for driving an XGP type device from the selected output of
one of the chennels. This might entail slowing the scan rate while
printing that page, which would garble that consoles screen
temporarily.

PDP-11

A PDP-11 (or a few) would control: the character fetcher,
sraphics processor and have what memory was needed per channel.
Probably the text associated with the page-printer would be in the
11°’s memory and scrolling (glitching) of the pieces of paper would be
handled by the 11. It is also possible that the line—editor functioncould be handled mostly in he 11. Other system wide features would
be updating of the status line(s) at the top (bottom) of the screen,
and mapping of characters into the other character sets.

One thing which I consider fairly important, is the ability
to change large pieces of text at a rate consistent with the
per—-character interaction time of the ig Therefore, some sort ofdirect memory interface is needed with the PDP-10s. There are three
possibilities that I see.

1) The PDP-10 addresses the PDP-11 as memory. To communicate
with the display system, the 10 writes whatever text it wants
displayed into PDP-11 memory and interrupts the 11. By assigning
11-type addresses to a page of a users map this allows the user to
send his stuff directly to the display, while still providing
Lousy to other parts of 11 memory. This is probably the mostirect way of getting the stuff there. One complication is that 10
text is usually packed as five 7 bit characters per word, vhile 11
text would be two eight bit characters per word. Since the. "“"pori®
into the 11 memory can be arbitrarily hairy, it could be arranged
such that one PDP-10 word would be mapped into the correct character
positions in 11 memory. For instance, locn. xC00 would be written
with the first address for characters to go, and ‘then derosits into
x001 would unpack the 5 . characters. into 2 1/2 FDP-11 words and
increment the write address. There are other schemes, but one added
problem is that on Foonly (you thought I was never going to mention
that), it would require storing the display data through the cache
(easy) but unfortunately isn’t. particularly efficient, since each
write operation would. probably be 20-30 Foonly cycles.

"2) The PDP-11 addresses the FDP-10 as memory. This is almost
a5 easy. for the system as (1), it Just puts the rointer to ihe
display stuff in some fixed place and pokes the 11, The eleven can
pick up the stuff while the 10 goes on, probably with the help of
formatting kludges that it would reference as unique locztions in its
address space. Since the 10 has a paging box, the 11 may have to have
one too (big deal). Also, this is somewhat more amicable to Foonly,
since the grand and glorious P. Petit IO Kludge would handle all the
unfortunate confusion of locating the date as it flies back and forth
from the cache..This also has the marginal advantage of allowing the
11. to scen some data area (user status) in the 10 system for disrlay
which otherwise would require periodic service from the main
processor. This scheme also satisfies those PDP-11 chauvinists that
would put the PDP-10 in its place. Unfortunately, it may be simpler
to add another Pmefoyy". to the 10 than it would be to add another
Mrrocessor” to all the PDF-10 memories.

oh 3) Some sort of memory-memory channel. This is a modification
of (2). Its only advantage is an overlap of PIP-11 processing.

Also as I understand, this system is supposed to be congruent
with a MNultix display system. Fere I coen”t imagine any comrlicated
interface to the IDP-11"s, just a high-speed date-phone like link,
with the 11 shuffling the right data onto the right channel.

I would like to also go on. record as being in favor of
adopting keyboards compatible with the Stanford system. 1 think that
the extra control bits are a complete win, and the extra cheracters
only logical considering a 7 bit code — certainly much prefersble to
the non-descript <control>-X type characters. The bugaboo about
"standard" character set doesn’t impress me tco much considering the
variety of keyboards and character sets which have been used on those
various systems. A much bigger advantage is gained by having all
terminals with identical keyboards. To those that say that the
"extra" features would be abused and lead to "bag" programming
practices(!) I would recommend a Ken Colby style overlay to keep
their little fingers off those keys.

@°@"@"e Qe @eee ere" Ere rete" eee ee Ete" EE ee ee" ee a a a" a" ¢
0° @"@ 0" @0 0" @C0" 0 0" 6 0 6" 0" 00 CE" 0 a" 00 "0 ("0 CC a Ga GE"
i

@ e ere" ere" ere tee TreteT ete eteret reteeeeeteate eee ete an ana
ct

@e"@ee Qe eee Ee" Ere"eee ee"ee a "ee" ere Ce ea aa" a"¢
"19 ie

@ eg eg ererereretgretetetetetereteretetetetet ere et etae

Roure ng.

5 Tr 4r-0401STANFORD TIME-SHARING PROJECT November 2, 1965
Memo No. 37

PROJZCT MAC

DEC © 2 1965

'DOCUi4ENT ROOM,
RAID (alias TVDDT)

by Paul Stygar

Abstract: Rapid Illustrated Debugging of
assembly language programs is
achieved under a time sharing
system by simulating a real-
time console on a display device.
A symbolic debugging ald which
features location protection,
single stepping and a dynamic view
of core 1s described.

The research reported here was supported in part by the National
Science Foundation (GP-3207).

A TEARS

RECEIVED
PROJECT MAC

DEC 6 1965

1 y 2A5-001

RAID (alias TVDDT)

by Paul Stygar

Introduction:

RAID 1s a display-oriented real-time debugging aid fashioned from
the grand tradition of the DDT (DEC Debugging Tape), It is available
on the Philco display units under Stanford's THOR time sharing system
for the PDP-1l. RAID lives in core with the programmer's routines and
uses the display buffer provided by the system to present to the pro-
grammer a panorama of information about the status quo of his program.
The disadvantages inherent in this scheme will be discussed later.

The philosophy underlying the design of RAID is partly the desire
to bring the programmer as close as possible to his code within the
confines of a time-sharing system. This goal is achieved by simulating
2 real-time console. The availability and flexibility of the Philco
display device facilitates matters greatly. A second component in
the design philosophy 1s the desire to provide a compact but powerful
command repertoire to facilitate the on-line interaction of a programmer
with the utility routine which is showing him his code. A powerful
command repertoire and a flexible framework enables the programmer to
perform a variety of real-time debugging experiments. An effort was
made to preserve the mnemonic or intuitive meaning attributed to the
various commands by the other utility programs available with the
THOR systems.

The third component in the design philosophy is based on the
observation that a debugging programmer pursues a zigzag pattern of
investigation. He typically will start at some point in his program
and examine the instruction flow from that point. The flow will branch,
and he will examine and re-examine the various branches depending on his
suspicions. Very often he will return to a line of investigation which
was previously abandoned. What the programmer needs is a flexible
scratchpad which will allow him to retrace his steps to pursue an
alternate path. This is achieved by providing an array of locations
which the programmer can generate in various ways. The contents of
the locations in the array are displayed on the screen dynamically.
Commands for shifting the focus of attention within the array give the
programmer a backup ability which he may exercise at will to recover
previous investigation paths.

As a result of these considerations - RAID is more useful and
easier to use than most consoles. The programmer may observe the

8 37

current contents of 16 locations simultaneously. As the programmer
alters and single steps the instructions on the display, he observes
the updated contents of the displayed core registers. In addition to
single stepping the programmer may execute selected portions of code
under the control of his program by specifying the teginning and ending
of the execution. He will benefit from the dynamic display when the
breakpoint instruction inserted in the program returns control to
RAID, In a variation of this, RAID interpretively follows the instruc-
tion flow and stops to update the display when it 1s about to execute
one of a pre-selected array of registers. This variation provides =a
slower but more versatile breakpoint system. The array of breakpoints
may be modified by the program without destroying the fact that the
breakpoints are stop signs. A second variation of this simulates
location lockout. The programmer -specifies an array of registers to
be protected. RAID executes the program interpretively and halts
when one of the specified locations has been changed. In either of
these variations the display is left containing the sequence of instruc-
tions which resulted in the stop condition.

RAID's value as a self-instructional device 1s obvious: the novice
programmer may enhance his understanding of the various computer in-
structions by executing them and observing the effects. The experienced
programmer may occasionally revamp his understanding of a particular
instruction. Generally a programmer single-stepping through his code
will encounter occasions on which his image of the situation does not
correspond to the actual situation. In writing code a programmer must
anticipate the effects of the various instructions, and he must main-
tain an image of what his code does to the memory registers involved.
When debugging with RAID, he recreates this anticipated image, and can
then correct his thinking where necessary.

Display Organization:
The display consists of data appearing in fixed positions on the

screen. Included are:

I. The current contents of 16 core locations specified by the programmer.
The octal and symbolic contents appear side by side on the first?
16 lines of the display in a form resembling FAP listings.

II. A pointer indicating which of the displayed locations is currently
open. The open location is that location which will be affected
if the programmer types a deposit command. The location will be
referred to as "the current open location®.

III. The contents of the AC (accumulator), IO (input-output register),
PS (program status word) and F(program flags). These registers
are simulated by the single step feature. That 1s, the contents
of these registers are displayed as they will appear to the pro-
gram being debugged.

TS 37

The expression being entered by the programmer, with a character
pointer indicating the position for the next spacing character.
After the command character has been typed, this expression
remains on the display until the command is completed.

An occasional error message. When visible the error message
indicates that the command just entered cannot be obeyed. This
condition arises if the character is an illegal command or if the
expression preceding the command contains unrecognized symbols.

When the programmer types a command to examine a location, we say
that he "opens" the location. That location becomes the current open
location. The command causes the contents of the location to be dis-
played on one of the sixteen lines of the display reserved for this
purpose. If the location 1s already displayed on one of the lines,
the pointer is moved to that line. A given location will not be dis-
played more than once. If the location opened by the programmer is
not already on the display, the contents of the location are displayed
on the next available line (modulo 16) below the current position of}
the pointer, and the pointer is moved to that line. By pre-positioning
the pointer before typing.the examine command, the programmer may
display the contents of a location on the line of his choice.

Command Structure:

Communications to RAID are typed at the Philco keyboard in lower
case. A typical communication would involve typing an assembly language
expression followed by a command character. For example, to examine a
location one would type the address for the location followed by a ":".
Alphanumeric characters appear as expressions and as commands. The
special black button to the left of the space bar is used to resolve
amiguities: a character typed with the black button down is always
interpreted as a command character. Characters such as “:%, ">" and
"<" are interpreted as command characters when the button is up. In
the following discussion an underline (e.g., "S") will indirate characters
which are not interpreted as commands unless accompanied by the special
button.

Reverse polish notation 1s used: when a command requires an
argument, the argument 1s typed before the command. The command
serves as a delimiter and no action is taken until the command is
typed. In the following discussion the argument is often referred to
as the expression preceding the command. Each command has two.
interpretations, depending on whether or not an expression is typed
preceding the command.

When a command character is typed without an argument, the default
interpretation of the command applies. There are two major types of
default interpretations. The first type concerns those commends which
expect an argument to be interpreted as an 18-bit quantity.. If such

5 27

commands are not given an argument explicitly, the contents of the
current open location are taken in lieu of the explicit argument.
Examples of this are the command characters ":" and "X".

The second type of default interpretation concerns those commands
which interpret an explicit argument as a 12-bit quantity specifying an
address. For convenience, when not given an argument such commands
operate on the current open location. When an argument is typed the
location corresponding to the typed address is opened and that location
becomes the current open location. The remainder of the operation of
the command is identical with the default operation of the command.
Examples of this are the command characters "G" and "S". In the de-
scription of such commands the default operation of the command is
given first.

Replication:

To avoid typing a command character repeatedly the programmer may
type a replicator with the command character. A replicator is a number
typed with the special button down and immediately prefixing a valid
command. The replicator causes the operation of the command to be
repeated the corresponding number of times. For example, a replicator
typed with the single step command "S" will initiate multiple stepping.
If no replicator is typed before a commend, "1" is assumed. If a
zero replicator is explicitly typed no operation is performed, and the
expression preceding the command is ignored.

A command typedwhile RAID is busily performing some task will be
executed immediately. For example, by typing a space the programmer
may interrupt RAID when it is preoccupied with multiple stepping. The
multiple stepping may be continued by typing another replicated single
step command. The use of partial results allows the programmer the
flexibility to perform complex debugging experiments.

Command Arguments:

The argument of a command is defined to be the string of legal
characters typed before the command character. For convenience in
correcting typing errors, a backspace typed without use of the black
button will erase the last spacing character typed. The argument
string is interpreted as an assembly language expression consisting of
octal numbers and assembly language mnemonics. The syntax is a small
subset of the PASS assembler available under the THOR system. In
addition to the unbuttoned backspace, the following are accepted as
argument constituents:

8 27

r 0,1,2,.++,7 may be used to form octal constants. An octal constant
may not contain more than six octal digits, corresponding to the
PDP-1 word length. Octal constants containing the digits "8" and
"9" are not recognized and will result in the error message.

II. + and - play their usual roles. A space separating two symbols
is an implied "+".

ITI. i (the indirect bit) has the value 10000 (octal).

IV. . (the "here" symbol) has the value of the address of the current
open location.

- Symbols and labels, such as the standard PDP-1 mnemonics, the
THOR Input-Output mnemonics and the programmer's address symbols
have their standard values. Unrecognized symbols will result in
an error message when the command character is typed.

Examine and Deposit Commands:

To open (display the contents of) a location, type an expression
for the address of the location, then type the command character ":".
To open the location referenced by the address part of the current
open location, type ":" without an argument.

To replace (overwrite) the contents of the current open location,
type an expression for the new contents. The following commands will
then overwrite the contents of the current open location. With or
without an argument, these commands have the listed effect:

carriage return Moves the pointer to the next line (modulo 16);

backspace Moves the pointer to the previous line (modulo
16);

tab or space Has no effect on the pointer;

Opens location .+1 (opens a greater location);
Opens location .-1 (opens a lesser location).

To make minor modifications to the contents of the current open
location, the following button-down commands are useful:

The expression preceding the command 1s added to
the contents of the current open location,

The expression preceding the command is subtracted
from the contents of the current open location.

TS 37

To display the address part of the contents of the current open
location in the notation for an assembly language constant, use ny.

repeatedly.

To display the contents of the current open location in decimal,
type "D".

To display the contents of the current open location as Philco
characters, type either a buttoned upper case shift or a buttoned lower
case shift character,

To alter the contents of the AC, IO or F, type an expression for
the new contents, followed by "A", "I" or "EF" respectively.

To zero core, enter "OZ". When not given an argument, the di A
command is illegal.

The Breakpoint and Single Step Mechanisms:

The single step feature allows the programmer to execute his
program one instruction at a time. Multiple stepping is achieved by
typing a replicator with the single step command. The instruction in
the current open location is simulated and the next location in the
instruction sequence is opened. The AC, I0, PS and F are simulated.
An error message is given if the instruction is one of the following
criminals: an illegal instruction, a one instruction loop, a halt, an
infinite "xct" chain, an infinite indirect addressing chain or a Y 18a
AC" (cf. breakpoint). An error condition encountered during mutliple
stepping will terminate the process,

The breakpoint feature is useful when the programmer wishes to
execute a sequence of code without single stepping through the sequence.
It is useful when the programmer wishes to use RAID immediately after
his program reaches a certain point in its flow, The breakpoint is
actually a "jda AC" instruction which is placed at the bresk location .
only when a "G" command is entered to transfer execution control to
the program (cf. hints and kinks). The "B" command indicates where the
breakpoint is to be placed. When the program encounters the breakpoint,
execution control is returned to RAID and the AC, IO, PS and 7 are
saved. A breakpoint addressed by an "xct" will cause a break. The
location causing the break is opened, and the display is updated. After
a "G", RAID does not resume execution control until either a breakpoint
is encountered or the programmer restarts RAID.

An interesting debugging tactic involving breakpoint is the following.
By planting a break in the middle of a loop and typing a replicated "G"
command, the programmer causes RAID to resume control, update the display,
and return control to the loop a number of times corresponding to the
replicator entered with the "G". If the display includes some of the

73.57

core locations modified by the loop, the programmer will see the
modifications displayed as the loop progresses. This tactic can be
used to checkout loops and to observe suspected bit-spreaders. The
programmer has the option of interrupting the process by entering a
a command. He also has the option of entering the several "G" commands
separately, without the replicator.

Hints and Kinks about Breakpoints:

DO NOT try to plant a breakpoint in program-modified locations.
For example, the return "jmp" from a subroutine is the wrong place for
a break. DO NOT break at locations which are used as data by the program.
Else let there be mystery. For example, do not break after a "jsp"
or a "jda" when the subroutine expects an argument sequence to follow
the calling instruction. One may place a breakpoint in the middle of a
chain of indirect addressing: the right thing will happen, because
"jda AC" contains an indirect bit.

The Program Status Word:

The PS combines the functions of the program counter, the extend
mode status and the overflow flip-flop. It may be operationally defined
as what the AC would contain if "lap", "jsp" or'jda" were executed at
the location preceding the current open location. Bits (6-17) of the
PS contain the address of the current open location. Bit (0) records
the state of the overflow flip-flop. Bit (1) records the extend mode
status. When the PS is reset the location referenced by the address
part is opened. The PS is reset when a breakpoint occurs, when RAID
is entered and when the commands "8", "Gg", "Q", "R" and "E" are preceded
by an expression. The PS is simulated by these commands. In particular,
the programmer may single step in extend mode.

Commands :

S The instruction in the current open location is single-stepped, and
the next location in the instruction sequence is opened. An ex-
pression preceding the "S" command will reset the PS and the address
referenced by the PS will be opened.

The instruction in the current open location is executed. If the
"X" is preceded by an expression, the latter is executed in lieu
of the instruction in the current open location. The censorship
of the "S" command is bypassed, allowing the programmer the
freedom to do mischief. No breakpoint is planted. This feature
is useful if the programmer wishes to treat a subroutine call as
a single instruction. Location .+l 1s opened if the instruction
does not skip. Location .+2 is:opened if it does.

TS 37

The location for the break is taken to be the address typed before
the "B". When no address is typed, the location for the break is
taken to be the current open location when the "B" was typed. To
suspend the breakpoint, type "5000B".

. A jump to the current open location is executed. If the current
open location is the break location, the instruction therein is
first single-stepped. A breakpoint (i.e., a "jda AC") is placed
at the break location, and the original contents of the break
location are saved, to be restored when control returns to RAID.
An expression preceding the 3 command will reset the PS before
performing any of the above.

Variations on Single Stepping:

y Protect the current open location. This causes the location to re-
main on the display until a "K" command is given. If the command
is preceded by an address, the addressed location is opened and
protected.

If the command is preceded by an address (e.g., ".X"), the addressed
location is opened and the line on which the contents are displayed
is erased. If no argument is typed, this command resets the RAID
page: the display is erased, giving the programmer a Holean slate’.
This command is especially useful before a search (cf. the “W",
"N" and “"E" commands).

- This commend simulates a "G", but with multiple kinkless breakpoints.
Single step quietly (without updating the display) until one of
the protected locations on the display is about to be executed.
The display is then updated to show the sequence of commands pre-
ceding the stop. An expression preceding the command will reset the
PR.

This command simulatés a "G" but with location lockout: Single
- step quietly (without updating the display) and report the status

of the program when the contents of one of the protected locations
changes. The display is updated when an interruption occurs at
the keyboard or when a protected location is changed by the code
which RAID is executing interpretively. An expression preceding
the "R" will reset the PS before initiating the interpretive execu-
tion.

The Word Search and Effective Address Search Commands :

W An expression typed before the command causes RAID to search core
for a location the contents of which match the expression preced-
ing the command. The operation of the command 1s completed when
such a location is found and opened or when the search has been
completed. The search is continued when a "“W" or a replicated

8

T8 37

"W" is typed not preceded by an expression. The programmer should
type an expressionless'W' after a word search to assure himself
the search was completed.

The operation of the command is the same as that of the Ww command,
except that the sense of the search is reversed: all locations not
opened by a "W" are opened by an "N" command. A not-word search
is continued by typing expressionless "N" commands.

An address typed before the command will reset the PS and the cor-
responding location will be opened. An effective address search
is then initiated: RAID will search core for a location the contents
of which effectively address the location specified by the expression
preceding the "E" command. The operation of the command is completed
when such a location is found and opened or when the search has been
completed. Indirect addressing chains are not pursued more than 100
levels. To continue an effective address search, type an “E" without
an argument.

J The upper limit of operation of the "E", "W", "N" and "Z" commands
is set to the address preceding the commands. If no address is
typed, the upper limit is set to 5000.

L The lower limit of operation of the "E", "W", "N" and “Z" commands
is set to the address preceding the commands. If no address is
typed, the lower limit is set to O.

M The mask used in word-searching is set to the expression preceding
the "M" command. If no expression was typed, the mask is reset
to T77777(octal). In matching the contents of a location with
the search-object, the "W" and "N" commands compare only those
bits specified by the mask.

G

78:27

The Programmer's Address Labels:

The PASS assembler available under the THOR time sharing system
provides the programmer with the opportunity to apply block structure
to the organization of his program. The effect of block structure on
program symbols is that at a given location in the program the only
symbols visible are those labels and symbols defined in blocks contain-
ing the given location. Symbols defined in other blocks are invisible.
A second effect of the block structure organization of the symbol table
is that the local symbols (the symbols defined in the deepest block con-
taining a given location) are given a higher priority. The symbol table
for the local block is scanned first. In the case of the same symbol de-
fined in several blocks containing the given location, the symbol defined
in the most local block is the one that is taken,

The symbol table formed by the PASS assembler is loaded from THOR
internal file 3 whenever the command "I" is typed. The table is loaded
into the area between the program break and the variable break. As
defined by the assembler, the program break is the last location occupied
by the assembled code. The variables break is the last location reserved
for a variable or a constant.

The symbol table is loaded into the space not used by the program
and is trimmed to fit. When the symbol table cannot be loaded completely
the symbols local to the first block completed by the assembler are the
first to be ignored. A block is completed by the assembler when a
"begin" and the matching"end" have both been scenned. The symbol table
for the program is compiled in the order in which the blocks in the
program are completed by the assembler during its single left-to-right
scan. The symbol table is loaded in the order opposite to the order
in which it was compiled. This means that the global symbols are the
first to be available during debugging, though as the space for the
symbol table diminishes even the global symbol table will be trimmed.

If the programmer suspects his symbol table is too large, he should
take advantage of the block structure and the expunge feature provided
by the assembler. The effect of expunging the symbols contained in !
debugged blocks of code 1s that the symbols defined in the block are not
included in the symbol table which 1s PASS'd on to RAID. As a bonus,
this increases the availability during debugging of the symbols lccal
to undebugged blocks of code.

Sundry Bits of Information:

RAID is entered and re-entered at location 5000 (octal). The AC,
10, F, overflow status and extend mode status are saved. The display
buffer and the THOR delimiter table are reset completely.

Locations 7520-7777 are a one record disk buffer which is used to
load the symbol table. Otherwise these locations are available to
the programmer,

10

TS. 37

The locations following the RAID entry point contain the
following:

Location: Contents: Description:

5000 Jjda AC A breakpoint

500% 171777 The word-search mask

5002 0 The word-search lower limit.

5003 5000 The word-search upper limit.

5004 5000 The break location address.

5005 0 A non-zero number here indicates
the capacity in number of symbols
of the space not used by the program.
If "O" there is no symbol lookup.

5006 The variables break. Locations
5005-5006 completely govern the
symbol lookup.

5007 0 The program break.

5010 30 A single-step counter.
5011 : A positive number here indicates

the number of blocks of symbols
not loaded by the "I" command.

Pragmatics:

The advantage of an in-house (cohabiting) debugging aid 1s that
the programmer may exerclse an option as to whether the aid is to
be used. Only the programmer in question pays to use the debugging
aid. He pays by allowing the debugging aid to use part of his core.
In return, he obtains the services of a debugged program which
specializes in working over undebugged programs,

But there are disadvantages. Some of these arise because the
debugging aid runs as a user program. This is particularly true when
the debugging aid is RAID and the time-sharing system is THOR, Exten-
sive use of RAID draws one's attention to three major prcblem areas.

First, the user does not have full use of core. In fact, approxi-
mately half of core is occupied by the symbol table and the RAID
routines. Because RAID 1s easily damaged by a hit-and-run bit-spreader,
RAID and the programmer are rarely on easy terms.

J

TS 37

Second, the user has no facility to examine and experimentally
alter the display buffer, though it is obviously of value to do so.
One cannot reasonably single-step code which references the display
buffer because RAID uses the entire buffer. There is some provision
in THOR for receiving typed output at an alternate output device,
though there is no provision for receiving display output per se at
an alternate device.

Third, the General Input Routine provided by the THOR system allows
efficient use of the input buffer allotted to each.user. However, in-
efficiency and inconvenience result when two programs share the unique
input buffer, especially when both programs provide for altering the
THOR delimiter table.

Summary:
As an experiment in real-time debugging techniques, RAID as

described above is moderately successful. Compared with batch-process
debugging techniques such as tracing and core dumping, a real-time debugging
aid alleviates the burden of anticipating the flow of the program. fhe
programmer examines core selectively and follows his code dynamically.
Compared with teletype real-time debugging aids, the use of a display
device allows the programmer easier access to a larger array of useful
status quo information. RAID bings the programmer closer to hig code
through the simulation of a real-time console.

However, the RAID limitations are not minor. It 1s necessary to
debug large programs and display-oriented programs. Perhaps it is
necessary to expand the area of co-operation with the time sharing
system, perhaps to the extent of incorporating the console simulation
into the time-sharing concept. Alternately, RAID would function
better in a middleman role between the program and the system, per-
haps as master of the former and subordinate of the latter. Console
simulation is here to stay.

12

73 37

Acknowledgements:

The acknowledgements are in chronological order:

To Professor John McCarthy, for providing the opportunity to
write a display-oriented debugging aid for the THOR system.

To Dow Brian, for making the author aware of the problems to
be solved in writing a display version of DDT.

To Susan Graham, for the idea paraphrased as follows: ''To
debug is to iterate the process of retreating to correct a mistake."

To Dave Poole, who as author of the PASS assembler provided the
program symbol labels which magically appear after the "T" command.

To the unmentioned programmers and self-appointed trouble shooters
who used the early versions of RAID. Their questions and comments
provided a store of things to keep in mind.

To Fran Thomson, for typing three of the n drafts of this report.

To Professor Niklaus Wirth, whose constructive criticisms fused
with the author's dissatisfactions to produce the very useful display
protection ("P"), multiple breakpoint ("Q") and lockout ("R") features.

12

STANFORD ARTIFICIAL INTELEGENCE LABORATORY SEPT, 1969
OPERATING NOTE 58

RAID
X I
X S
GOOD
FY
0.0
R uU

by Phil Petit

ABSTRACT: ::
Rajd is an interactive debugging program which uses

the displays and al |ows dynamic monitoring of memory l|locatlons,

This work was supported by the Advanced Research Projects Agency
of the Department of Defence under contract SD-183.

SAILON #58

J Rald is’ ‘sa debugging program (RAID == Kills bugs == get 47),
Rald |lves in core with your program and allows you to do various
things with and to your program, such as stop at selected places and
examine your core Image, etc. The major advantage of Rald over DOT,
Is that Raid uses the displays to glve you a constantly updated view
of selected locations in core. Consequently, however, this means
that Raid cannot be used from a teletype,

The first step In using rald is having a program to depug, For
most of us this is the hardest part, The second step is to get Raid
and the program loaded together!

LOADING RAID: 23:313:

The loader will] load Rald with your program [If you use the /V
switch. For example If the binary fille for your program was called
FNORP, the loader command /VFNORP$ (where § means alt-mode) would
cause the loader (on a good day) to load Raid with your program.

Additionally, |f your proJect-programmer number is In a speclal
list In the system, Raid wil] be loaded Instead of DDT when you type
DEBUG, Ask a system programmer how to get your project=programmer
number on this list,

Once you have your program and Raid in core, you must get into
Rald, This is done by typing DODT<cr> to the system. This is because
the system can’t tell the difference between Rald and DDT, Stupid
system. When you type DDT your display screen will flash and at the
top wil| appear the word RAID twice, The duplexing of keyboard Input
will move down to the bottom of the screen. If it runs off the
bottom of the screen so that you cannot see it, you can get It back
by typing several dozen carriage returns, Raid Is now ready to
accept commands, The first command you wii] want to type wiii
probably be the one which points Raid at your symbol table, but we
must now pause in thls tale of drama at the keyboard and dlscourse on
the format of commands,

COMMAND FORMAT? :33svses:

Rald commands gonsist of two parts, the first of whigh may
sometimes be absent, The first part is a value, and the second is a
command character, which may or may not have control bits with it.

Values:

A value can be a single number or defined symbol (like one of
your labels), or an arithmet|c expression Involving numbers and/or
symbols, or a machine Instruction In standard assembler format, etc.

RAID

! SAILON #58

Below is a list of the various value formats and what they mean,
(Arithmetic Is integer.)

VAL1 VALZ2 sum of VAL1 and VALZ

VAL1+VALZ2 sum of VAL1 and VALZ2

VAL1=-VAL2 obvious

VAL1#VAL?2 product (multiplication) of VAL1 and VAL2

VAL1/VALZ2 quotient (division) of VAL1 by VALZ

(VAL) this causes the two halves of VAL to be swapped

VAL, |f not foilowed Immediately by another comma,
thls causes the value to be trungated to four
bits and shifted left 23 (decimal) positions. To
save you some calculating, that puts [t In the
accumulator fleld,

VAL ,, thls causes VAL to be placed In the left half
(l,e. shifted |eft 18 places),

@ has the value 2d,, l,e. the indirect bit

' has the same special meaning as [n the
assembler 1,e, the place you currently are,

In addition, the following funny things exl|st:

in front of a diglt string causes the string to
he Interpreted as decimal instead of octal,

followed by a echr,: followed by a string not
containing that chr,, followed by that ghr., has
the value of the |eft adjusted ascli of the first
5 or fewer characters In the string.

is just like " except that it is sixpit.

<etrl 1)’ (this means the ’' character wlth the c¢ontrol-1
key down) this causes the string of characters
following Its. Up to the first non=letter

RAID 3

SAILON #58

non-dligit character to be converted to radlx59,
and has that value,

Cetrl 1>% followed by a string of values(not containing
comma) seperated by commas, causes the values in
the string after the first to be considered bytes
of a size Indicated by the first valye In the
string.

EXAMPLES: 2:

=10 has the value 12 (octal)

"/POT/ has the same value as ASCII /POT/ has [n the
assembler, namely ~= 502372400000

7 has the same value as SIXBIT /DSK/ has Jn the
assembler, namely ~~ 446353000000

Cotrl 1>%3,5,4,3,7,8,7.1 has the value 543707100900

RAID COMMANDS:

Rald commands consist of a single character, somet[mes with
control bits, sometimes preceded by a value, In the following
discussion, <ectrl| 1> preceding a character will mean that character,
typed with the control=1 key down, Similarly, ctrl 2> will Indicate
the control=2 key, and ctrl 12> wlll Indleate both keys,

The following things should be kept In mind, Raid allows you to
see the contents of various locations In core by dlsplaying or
"opening" these locations on your display screen, It places a
pointer next to the most recent location opened. These |ocations are
Jysually displayed In the order In which they are asked for, starting
at the top of the screen and going down, One exception to this is
the < command: the other is If the location already appears on the
screen. In the first case, locations are displayed going up the
screen: in the second case, the pointer is moved to the place on the
screen where that location Is already displayed. There js a maximum
number of locations which can be displayed at one time. This maximum
number can be set with the I command, and Is Initially 18 (l,e. 8).
Nhen the bottom of the screen (based on the maximum number) is
reached by the pointer, It wraps around to the top, and starts
replacing the locations there with the new ones, When the pointer
reaches the top while moving up, It wraps around to the hottom.

RAID

SK

Ra = SAILON #58

The normal polnter consists of a "both-ways arrow" (*), but
there are two other kinds of pointers which are used sometimes, They
are left arrow (+) and right arrow (=), The both~ways arrow Is the
maln pointer, and, as long as there Is no right arrow on the screen,
the location pointed to by the both-ways arrow Is the value of "dot"
{Vege 0) However, if there Is a right arrow on the screen, the
value of "dot" wil! be the location pointed to by the right arrow,
In the following discussion of the Rald commands, the phrase "the
location pointed to" will always refer to the location whose value is
"dot": i,e. the location pointed to by the right arrow, if any’ else
the location pointed to by the both-ways arrow, This ai} sounds
falrly confusing, but the confusion Is In the description rather than
in what Raid does,

Locations are opened and displayed in varlous modes, Raid
Initially opens |ocations in "eymbpollc" mode (sympbolic?), This means
that words are d|splayed, as much as possible, as machine
Instructions In standard assembler format, All this can be changed,
however, wlth the mode commands listed below, Al| the mode commands
Use one or more control blts (they are all typed with one or more
contro! keys), and the significance of the different compinations of
control bits is the same for all] of them, If a mode command Is typed
with only the <otr| 1> bit, the mode of the location pointed to by
the both~ways arrow is changed, and nothing else, If It Is typed
with <ctrl 2>, then the mode Im which FUTURE locations are opened Is
changed, until a carriage return |s typed, at which point the mode
reverts to the "standard" mode =- Initially cymbolic, If It Is typed
with both control blts (<ctr! 12>) the mode for future locations is
changed as with ctrl 2>, but the "standard" mode is also changed.
Note that with both the <ctrl 2> and the <ctrl 12>, none of the modes
of locations already on the screen Is changed,

This sets the mode to "cymbollc", This means that words
will be displayed as machine instructlons, if possible, and
that fields (address, Index, etc,) wlll be displayed as
symbols from your symbol table (see below) plus or minus an
offset, If possible, See appendix A for a full discussion
of this mode and the parameters which determine what It
does,

This sets the mode to "octal". Words are displayed as
octal (pase 8) numpers, except that a space |s Inserted
between the |eft and right ha|ves of words If the |eft ha|f
ls not Ze,o,

This displays words as decimal numbers, preceded by an
squal=sign (=).

i A I 0

RAID SAILON #58

This displays words as decimal floating-point numbers,
unless they are not normalized, In which case they are
displayed |n decimal mode (above).

This is half-word mode, The |eft and right halves of the
word are displayed, symbolically (l,e, as sympo|s from
your symbol| table, plus or minus an offset), separated by a
double comma,

This Is ascli» or 7-blt typewout mode. The word is
gsonsidered to contain 5 characters of 7 bits each, left
adjusted In the word and these 5 characters, plus a
possible sixth |[f the low order bit is on, are displayed.
Carriage return, line feed, and form feed appear as a smal |
CR, LFs and FF, respectively, If the high order 7 pits
(first character) in the word is ©@ (null), the word Is
considered to contain right adjusted ascli,

VAL T This Is for other character type-out modes, Legal| values
for VAL are: 7 for ascii (as above), 6 for sixbit, and 5
for radlx5d,

n This is byte-pointer mode. The word Is ‘displayed in
exactly the format used by the assembler POINT pseudo=0p,
that is, the word POINT followed by a size fleld, followed
by a comma, then the address, index, etc.» then possibly
another comma and a position, The size and position are
decimal.

VAL V This is byte mode -=- the output analog of the <ctr|>% Input
mode. The word Is typed out as an appropriate number of
bytes, separated by commas, The bytes themselves are typed
in octal, The VAL Is the byte size and should not be
negative, A byte size of # has a special meaning which is
described |n appendix A.

This is absolute mode, Thls one is different from a|l the
others In that it does not change the basic mode of the
mode belng changed, but merely Indicates that, whi|e the
word Is belng typed out In the same mode as before (the
last mode Indicated for It), addresses and other fle|ds are
typed as numbers instead of symbols,

This is the same as cymbol|lc mode except that the address
field (rlaht half of the word) Is considered to be up to
three rlght=adjusted ascl! characters and Is typed that
way.

VAL U This is as above except tnat VAL indicates: if it is 5,

A

RAID SAILON #58

then radix5@¢ for the address fleld, if [It is 6, then
sixbit, and if It is 7, then ascii, as above.

The following is a |Isting of the commands to examine and change
core.

VAL Cotrl D> This points Rald at the symbol table for the
program Indicated by VAL, In this case, VAL
should be a single Identifier,

VAL Kectr) 31> & This points Raid at the symbols (within the
program |t Is already pointing at) for the block
indicated by VAL. Again, VAL should be a single
Identifier, If you don’t use block structure,
Ignore this command,

Co This causes the location VAL to be displayed, If
It is already on the screen, Raid just moves the
pointer to that position, otherwise, it displays
it in the mext |ocation on the screen.

VAL <Cctrl 1D This causes the location VAL to be displayed as
above, except that the locaton ls also
protected. This means that a star appears on the
screen to the |eft of the location and that
location cannot be erased from the screen,

<ctrl 1> : This, which Is the same command as above, but
without the VAL, causes the location Rald is
currently pointing to to be protected.

ctrl 2> This causes the location Rald Is currently
polnting to to be unprotected,

This causes Rald to display the next higher
location from the one It Is currently pointing
at. For example, If jt Is currently pointing at
location 36, this command would cause |t to
dispiay (and point at) location 37, 1f the
location Is not already on the screen, the
polnter moves down one position to display this
next location.

This causes Rald to display the next lower
location from the one It Is currently pointing

IAI

SAILON #58

at, For example, If It is currently pointing at
location 36, this command would cause it to
display location 35, If the |ocation Is not
already on the screen, the pointer moves UP one
position to display this next location,

<otrl 1> > This causes Rald to move its pointer down one
position without changing what location is
displayed there, As always, If the polnter Is at
the bottom, moving down causes It wraps around to
the top,

Cetrl 31> This causes Rald to move its pointer up one
position. As always, If it Is at the top, moving
Up causes |t to wrap around to the bottom,

Cotrl 2 ; This Is the same as > without any control, except
that instead of displaying the new location in
the current mode, It displays It in the same mode
as the location It Is currentily pointing to, For
example, If you open the flrst word of your
teletype buffer, and change the mode for It to
ascii,» you can then open the second word of the
buffer in ascil by using this command.

Letrl 2> iN This is the same as < except for mode as above.

fetri 12> > This Is the same as <ctrl 1> > except for mode as
above,

Ketel 12> This is the same as <ctrl| 1> < except for mode as
above,

YAL <Kctri 1> I This causes the number of Iines Rald Is wllling
to display to be set to VAL, This number is
initially 18 (i.e, 8).

Cotri This causes the number of |Iimes Raid Is willing
to display to be Increased by 1.

Ketrl 2> I This causes the screen to be cleared of all
displayed locations, This puts the screen back
to the condition It was In when Raid was first
loaded, except that it dees not change the
program or block pointed to,

Carriage return, not preceded by a value, has no
effect except to cause the screen to be ypdated.

RAID 8

FA, SAILON #58

VAL Carriage return, preceded by a value, causes that
value to be placed in the location currently
pointed to (by the right arrow, |f any, e|se by
the both-ways arrow), That Is, the location
whose value Is dot (i,e. si)

This has the same function as > except that the
VAL is flrst placed In the jocation pointed to,
ag With carriage return. ALL forms of > and <
(as well as TAB and all forms of [, J], and @) act
as If they were preceded by a value and carriage
return, If they are preceded by a value} I.e,
they deposl!t that value in the location gurrently
polnted to before having their standard effect,
These commands are not al! |Isted seperately,

Tab causes the location whose address ls [In the
right half of the word currently pointed to by
the both-wyays arrow to be displayed, Note that
If TAB is preceded by a value, that value is
first placed in the location pointed to, and THEN
the J|ocatlon Indicated by the right half OF THAT
VALUE is opened,

A semicolon, with no contro! bits and not
preceded by a value, causes the |ocatlon
indicated by the right half of the word currently
pointed to by the both-ways arrow to be opened,
as with TAB, exgept that, while the pothe=ways
arrow moves to point to the new jocation, a right
arrow is |eft behind at the old location, except
If there Is already a right arrow on the screen,
In which case, the right arrow stays where it is,
This means that the value of dot is not changed,
and that |f something is deposited, It is
deposited In the old location (where the right
arrow is), Note; however, that if a further
semicolon Is typed (by Itself), the location
opened will be the one indicated by the right
half of the new word, the word pointed to by the
both-ways arrow, Note aiso that typing this
command preceded by a value converts [t to a
different command; see above,

ctr} 1> C This has the same effeet that semicolon by Itself
has, namely It opens the location indicated by
the right half of the word pointed to by the
both-ways arrow, but does not change dot; except
that It can be preceded by a value, In whleh case

RAID :

VAL

{TAB>

' SAILON #58

that value Is deposited in the location currently
pointed to (by the right arrow, If any == j.s.
dot) BEFORE opening the location indicated,

{ete 20 C This has exactly the same effect as TAB, Note
that preceding It with a value causes that value
to be deposited BEFORE opening the Indicated
location,

Cetrl 1D J This has the same effeet as <etr! 1> [except
that it uses the left half, Instead of the right
half. Agaln, It leaves a right arrow behind,
Unless there |s one already, and it may be
preceded by a value, which will be deposited
BEFORE opening the Indicated location.

Ketrl 2> J This has the same effect as <etr] 2> [except
that it uses the |eft half, This one can be
preceded by a value too. If you think you're
getting tired of reading all this detall, think
how tired I am of typing It.

Cote) 1D @ This has the same effect as <ctrl 1> [except
that It uses the EFFECTIVE ADDRESS of the
location currently pointed to by the poth~ways
Arrow, Yet again |t leaves behind a right arrow
(If none yet) and may be preceded by a value,
You can figure out what happens if Jt’s preceded
by a value, can't you?

Ketel) 2 @ | bet you can figure this one out by yourself,
That’s right, It has the same effect as <egtr! 2>
{ except It uses the effective address instead of
the right half,

Cote 12> [This and the next two commands are a |lttile
complicated, This causes the locat|on currently
pointed to by the both-ways arrow to be protected
(remember the |ittle star that keeps things on
the screen?), then opens and protects the
location addressed by the right half of the
location pointed to by the both=ways arrow, but
does so DYNAMICALLY, This means that whenever
the right half of the word pointed to by the
both-ways arrow changes (that Is, the word which
was pointed to by the both-ways arrow at the time
this command was given), the location which was
caused to be displayed by this command is ghanged
to be the |ocation NOW Indicated by the right

RAID 10

RAID 11SAILON #58

half of the word which was pointed to by the
both-ways arrow at the time the command was
glven, Is that clear? Perhaps an example would
help. Suppose you wanted to keep tragk of the
top location of the stack. You wou'd say PI ’
which would cause the push-down pointer (which
everyone but DEC calis P) to be displayed (and
pointed te), Then you would say etre) A201 .»
This would cause the P location to be protected,
then would open the location addressed by the
right half of P, and cause it to be protected,
However, from then on, whenever P changed, the
location you just displayed would change to be
the |ocatlon addressed by the right half of P ==
or the top location of the stack,

A few special things are true of the |ocation
opened by thls command, First of all, you should
avoid pointing to this location on the screen and
trying to deposit. in gt, You will wind up
depositing In a table inside Raid, and your
screen will do funny things, You are helped in
this by the faet that this command leaves a right
arrow behind, so the only way of pointing to this
funny location Is with the etri 139 command
and Its friends. If you open this same location
by normal means, It will be opened In another
place on the screen, and you can deposit In it
there, For example, If, in the P example above,
the right half of P addressed location 320, and
you said 324; , you would get |ocation 388
opened in two places on the screen. The old one
would be the dynamic one, and the new one would
be an ordinary one,

1t is possible to rchaln" this command with
itself (or with the next two, in any order Or
combination), for as many locations as you have
room on the screen, For example, if, in the P
example we have been belaboring, you had said
Cetr| 12>L twlece, Instead of once, you would

have opened the location addressed by the right
half of the word on the top of the stack, This
Is all dynamic == now to two levels == spo that if
P changes, you have displayed, not only the new
thing that P points to, but also the new thing
that the new top of the stack polnts to.

Note, flrmnally, that if this command, or either of

’ SAILON #58

the next two, Is preceded by a value, that value
is deposited in the location currently pointed to
(by the right arrow, If any), as above, BEFORE
the operation takes place.

Ketel 12> J 7This is exactly the same as the <Keotr] 12>[
command above, In all Its confusing glory, except
that it uses the LEFT HALF Instead of the right
half. Will wonders never cease? No.

Cotri 12> 0 This is exactly the same as the <Cetr| 12>(
command above, in all Its confusing glory, except
that It uses the EFFECTIVE ADDRESS instead of the
rlaht half, WI|| wonders never cease? Yes,

VAL Ketel 13 This causes a word Inside Raid to have VAL (not
the contents of VAL, but VAL Itse|f) deposited
Into It, and that location to be displayed on the
screen. The Jocation Is opened in octa| mode,
but the mode can be changed, as wlth any other
location displayed, This cammand l|lsaves a right
arrow behind, If there isn’t already one, This,
then, is a way of seeing what some value Is in
other modes, For example, you might want to See
what the octal value of the labe| FOO is (say
FOO<Lotr | 1>=), or what the cymbolic
representation of 346 might be,

VAL should pe a single identifler., Thls g¢ommand
causes a symbol, or label, with the name of
whatever VAL Is, to be created and put into your
symbo| table, The symbol Is put inte the block
you are currently Inside, and Is given the value
of the current vajue of dot, I,e. the |ocation
currently pointed to,

This command differs In format from the standard,
It should be followed by another value, VAL1,
VAL should be a single identifier, but VAL1 may
he any value, This command creates a symbol with
the name VAL (as does the : command), put sets
Its value to VAL1, VAL1 should then be followed
hy a carriage return.

12RAID

/AL

/AL

0 SAILON #58

VAL: <otei 1>. K This causes the symbol! VAL (which should be =a
single Identifier) to have a blt turned on In Its
symbo| table entry whieh causes Rald to not use
the symbo| for typing out the contents of
locations, In other words, this has the same
effect as using double |eft arrow (««) In the
assembler,

VAL <etr| 31> W This Is the word=-search command, The general
effect is to find all words which have yAL in
them. Speclifleally, Raid searches core, between
certain |imlits, which may be set (see below), for
words which mateh VAL (not the contents of VAL,
but VAL itself) In all bit positions whigh are on
In location $M, That Is to say, two words are
compared by XORing them, and then ANDing the
result with jocation $M, If this produces 8, the
words to match. Raid continues to search,
opening each location which matches, until it
comes to the end of the range, or until It has
found enough matches to half-flill the display
locations avaliable, at whlch time it stops and
prints a blg star (#) on your screen, You may,
at this point, type Vv (the "or" key) to continue
the search, and Rald will plek up where Jt eft
off, stopping when It has again ha|f=f]|]ed the
screens or you may type any other command, (No
characters are lost.) However, If you do not let
a search run to completion, the next search You
do will take up where the last one left off, You
can, at any time later, type v and gontinue the
last search you did,

VAL <Sctrl LO N This is not=~word=search. This works exagt|y |lks
word-search, except that words are gons|dered to
match only If they are different In some bit
which is on In $M,

VAL <etrl 1 E This Is effective address search, It works |lke
word-search except that for each word examined,
the effective address is calculated, and this
effective address |s matched with VAL, The mask
in $M is not consulted, and words are considered
to match [If VAL and the effective address are
exactly the same,

RAIL 13

SAILON #58

(The "or" key), This causes the last search You
did to pe continued. ‘1f you have dene no
searches, or If the iast seargh you did has
already run to completion, this command does
nothing,

This causes the lower search bound, for the next
search only, to be set to yAL. At the completion
of the next search: this pound will pe set back
to its original value,

VAL Kote) 31> V This causes the lower search bound to be set
permanently to yAL, This sets the value back to
whlch the search bound wil| be set at the
completion of a search,

This sets the upper search bound, for the next
search only,

VAL. fete). 1D n This sets the upper search bound permanent|y,

The following section describes the Raid commands whigh allow
you to run your program in various ways, These Include the commands
for manipulating breakpoints, which cause your program to pause when
lt gets to selected places, so that you can poke at it and see what's
wrong. There are also single step features which allow you to run
vou proaram one Instruction at a time, while displaying important
locations,

Associated with several commands (including the searches above),
Is a blg star (#), which Rald prints on your screen to let you know
lt Is done with something which may have taken It a whlle, This
star, in all cases, Is removed the next time Rald recieves input --
usually as soon aS you type anything,

YAL "Ketel 1D G This is the go command, It causes Raid to start
running your program at location VAL, Raid
actually transfers to your program, So your
program wll! continue to run until ft hits a
breakpoint, |f any, or you say control!l=C, or your

14RAID

VAL

VAL

SAILON #58

program exits or does something the system
doesn’t | lke,

Ketrl 1D G The go command, without a value, starts your
program at |ts starting address, i.e, the
address in the right half of JOBSA.

VAL <etrf B This causes Rajd to plant a breakpoint at
location VAL in your program, What Rald actually
does, is change this J|ocation to a JSR "tp a
certajn location |n Raid, remembering what the
location used to be, This means that when your
program gets here, it will JSR to Raid, at which
point Raid will put the location back to what it
was, open the break-point |ocatlon on the screen
and print a blg star on the screen. You are Now
In Raid and can type commands to It, If You
examine locations, or move the both-ways arrow in
any other way, Raid leaves behind |[t a left
arrow, Rald always prints a |eft arrow at the
mext location your program should execute, if
that |ocatlon Is on the screen, and If the
hoth-ways arrow |s not there,

VAL Setel 22 B This removes the break=point, if any, at location
VAL,

etri 22 B This removes all break~points,

ctrl 1> P This causes Rald to continue running your program
from where It left off. If your program hit a
breakpoint, Rald wl|| eontinue your program wlth
the breakpolnt instruction (executing the real
Instruction there), and your program will run
nti It hits another (or the same) break=point,
ete. If you have been stepping your program (See
helow), Rald starts it up at the next location to
be executed,

VAL Cote) 1D P This causes Rald to procede (as above) from the
current break-polint (the last one you hit), VAL
times, That is, It has the effect of saying
Cotrl 34> Py, VAL times, as long as You hit the
same preakpoint each time. 1f you hit other

RAID 15

SAILON #58

breakpolnts In between, you will stop, then if
you procede from them and hit the oid breakpoint,
the countlna wlll continue, See appendix B for
details of getting out of this, ato, This
description is not, I realize, totally
unambiguous, When a description is ambiguous,
keep in mind that Raid generally does the right
thing,

{etri - This causes Rald to open, on the screen, the next
locatlon your program is going to execute, I.e.
the next step location, or the last break=polint
vou hit,

fetri 1D S This is the basic step command, It causes the
next location In your program (the next location
to be executed: the |eft arrow location) to be
stepped. This means that the instruction has Its
effect, and then you are back In Raid. It |s as
if you had planted a break-point on the next
Instruction you would get to, and nproceded.
After stepoing, Raid opens the next location (the
next one you will execute). It does not print a
star. If the Instruction you step skips one
instruction, Raid also displays the Instruction
skipped.

Lote] 2 S This |s exactly |lke <ctri| 1> S except that
instead of stepping the next instruction of your
program, it steps the |jnstruction currently
pointed to (by the RIGHT arrow, if any, else by
the both~ways ‘arrow -=- j,e, dot). 1t then opens
the location that that gets you %o, and it
becomes the next location to be exeguted, Note
that this Is a way of getting started with
stepping, |f you haven’t run any of your program
yet, or If you want to change the flow of your
program,

<etrl 1> A This is the basic execute Instruction, 1t has
the same effect as <ctr! 1> S, except if the
Instruction to be stepped (executed), Is a
subroutine call Instruction (JSR, PUSHJ, JSA, or
JSP), or a user UUO, In these cases, It treats
the instruction, and the subroutine (or UuO

RAID 15

SAILON #58

routine) It calls: as one Iinstrugtion, This
means that your program starts running at the
subroutine call (or UUO), and runs untl| it
returns, and stops on the Instruction it returns
to, This Instruction Is then opened, Note that
If you STEP a user UUO, you wind up Inside your
UUO routines, There Is a restriction Involved In
this command, and |t applys also to the next two
commands (the other two X commands), The
restriction concerns how many locations a
subroutine (or UUO) may skip, The maximum Is 7,
If you execute a subroutine call, or a yuo,
(currently no system UUO skips more than 1,
except INIT, which is handled as a speclal case
by Raid.), and |t skips more than 7 locations,
you will wind up In a funny place In Raid and al]
sorts of wrong things will happen. A few Words
should be sald about break-points In executed
subroutines, In general, they work. You may hit
a break-point Inside a subroutine, the call to
which was executed, and you may then step and
execute other Instructions, When You procede
from the breakpolnt, you will get back when the
subroutine exits, Just as If you hadn't hit any
breakpoints, You should NOT step the subroutine
return, as you will wind up stepping |ocations
Inside Rald, If you do this aecldently, and
haven‘t gone too far, you may procede (<gtrl| 1>P)
and the right thing will happen. You may nest
executes to a |eve| of 8, You should avoid
executing subroutine calls which you don’t return
from,» as you wll! remain Inside the Subroutine,
as far as Rald Is concerned, until] you do return,
and this wlll decrease the number of levels You
can nest subroutines,

<etrl 2> X This works Just |ike <ectrl 1>X except that it
starts with the Instruetion currently pointed to,

VAL <etrl 12> X This causes the Instruction VAL (VAL itself, not
the Instruction at VAL) to be executed as though
It was In your program, Executing the
Instruction has no effect on which instruction Is
the next Instruction to be executed, even [f VAL
Is a jump or skip, VAL may be a subroutine call,
in which case the right things happen, The
restrictions listed above for executing

RAID 17

SAILON #58

subroutine calls apply, Note that executing a
JRST with thls command has no effect (except
possibly on flags),

VAL deter] 22>|YThishasthesameeffectas<ctr!l12>XifVALisa subroutine call. Otherwise, the instruction is
just plain (vanilla) executed, regardless of what
it is. Even jumps are not interpreted, If the
instruction does not jump, It should not skip
more than two, and control reverts to Rald as
with Sctel 312%, 1f the instruction doss Jump,
you are off and running, as with ctrl 1>G, unti]|
you hit a breakpoint or something. The purpose
of this Instruction is to augment the <ctri 1>6
command. It is to be used wlth things |like
flag-restoring JRSTs, and such, and has only
minimum utl|ity, except In the exec Rald version,

Lette] 12> 8S This Is the multi-step command. It has, except
as noted below, the same effect as repeatedly
saying <ctrl| 1>S, It steps the current |ogcation,
updates the screen (displaying the next
instruction to be executed), steps the next
Instruction, updates the screen, and so on. It
keeps running until! either you type a key, in
which case it stops and returns contro| to Raid
(the character you type may be anything, and Is
jgnored): or it gets to a subroutine gall or
subroutine return Instruction (Subroutine return
Instructions are: POPJ, JRA, and JRST @), When
It reaches one of these, it pauses and displays a
hig ‘star, If you type S, and it is a subroutine
call, it steps the call and continues with the
multi=-steppling, lf you type X ‘and jt is a
subroutine call, It executes the subroutine call
and continues with the multi-stepping, If you
type S or X and It Is a subroutine return, it
continues with the multi-stepping. If you type
anything else (except as noted In appendix B),
for instance space, It returns control to Raid,
and you must types <otrl 12>S to restart
multi-stepping, UUOs are treated as subroutine

RAID 18

RA. SAILON #58

This ends the discussion of Rald commands, You now know as much
as (more than?) you need to to use Raid. It Is suggested that at
this point you go poke at Raid a |lttle to become familiar with It,
1f you want, you may read the appendices at this time, but It is
probably better t0 walt until you nave used Raid and are more
familiar with it,

ID 19

SAILON #58

APPENDIX A

CYMBOL IC MODE :2zttsaryrrsstssantan

This describes how cymbol!lc mode decides how to display a word,
If the left half of the word is @, It Is displayed in halfword mode,
1f the left half is all ones, the word is printed as a negative
number. If the left-hand nine pits (opcode) is @ or 777, the word I8
printed In halfword mode. Otherwise, If there Is an entry for the
opcodes the word is printed as an Instruction. If there iS no opgcOde
entry,» an opdef entry is searched for, and if none Is found, the word
Ils printed in half-word mode.

1 the word. Is printed as an Instruction, ithe Index and
accumulator flelds are printed as symbols only If there |s an exact
match, otherwise as numbers,

PRINTING SYMBOLS tats

When Raid is going to print a number, unless it is in absolute
mode, or some mode where numpers are always printed as numbers, it
tries to print the number as a symbol, plus or minus an offset, To
do this, Raid first searches the symbol table for the two best
matches with the number it has, one greater, the other less. If the
number Is less that 140, Rald requires an exact match, or |t prints
It as a number. Otherwise, if It has found an exact matgh, It prints
that symbol, If not, it aces through some contortions to declde
which close match to use, and whether or not It will use either,
There are four parameters It uses in deciding. These parameters are
stored at location $C ff. The first parameter, the one at $C, Is the
maxirum plus offset, The second one, at $C+1, is the maximum minus
offset. Both of these numbers start out at 77, but may be changed,
The value is anded with 777 before use, The third parameter we will
call S» and is initially 12, the fourth parameter we wll| call Q, and
ls Initially 482, We will call the plus offset P, and the minus
offsat M, Raid flrst compares P and M with thelr respective maxima,
If both are too big, the number is printed as a number. If P Is too
blg but M Is not, then M is used (the minus one), If M |s too large,
but P Is not, then P is used, If both are within the |imits, then
the fuction F=((P#Q)/1283)=-S=-M Is calculated, where 100 is octal,
If F |s positive, M |s used, otherwise, P Is used, This means that S
and Q are relative welghting parameters; S is additive weighting, and
Q Is multiplicative, Notice that If Q=1P0 and S=@, Rald uses the
smaller of M and P, If Q is instead 49, P is used unless It Is twice

RAID 20

RA. SAILON #58

as blg as M. On the other hand, If Q=190, but S=10, P is used unless
It Is greater that M by more than 18,

BYTE S12 Piz vstnrsay

If the byte size In the V mode command, or In the <gtrl 1>%
Input string Is @, the bytes are Interpreted acording to a mask in
location $M+1, Bytes may be any sizes, and the boundaries are
Indicated by a change from @’s to 1’s, or vice-versa, In this mask,
For example, if $M+1 contains 707870707370, this would indlcate 3=bit
hytes. 7700770087787 would indicate 6=pit bytes, 741703607417 would
Indicate 4-bit bytes, 778778778778 would indicate a 6=bit byte,
followed by a 3-blt byte, followed by a 6-bit byte, followed by a
3-bit byte, etc. 252525000008 would Indicate 18 one=bjt bytes
followed by a 18-bit byte,

RAID DEFINED LOCATIONS: 1:3 12tsenassssane

RAID This is the starting address of Raid,

n=T This Is the same as RAID,

DDTEND This is the first unused location after Raid, 1t Is not
very useful now that the loder moves the symbol! table down
(up?) to just bevond the |Jast program loaded.

This and the three locations following Jt are the
parameters for deciding how to print symbols. See ahove.

tM This locatlon is the search mask, It Is initially set to
-1. See the search commands,

TM+1 This is the byte mask for @ byte size, See above.

: This is the location where Raid keeps its current Idea of
your prodram counter == the address of the next Instruction
to be executed. Breakpolnts JSR to thls logation, The
left half contains your program flags, If you change the
left half of this word, you wlll change what program flags
get restored each time your program Is started up.

A 21

0

$C

61

Ke. 0 SAILON #58

$1B to $20B These 20 locations, and the four locations folowing
each of them, are the breakpoint table, For a detalled
description of what each contains, see appendix B, The
first word Is the address of the breakpoint, The location
is =1 If this breakpoint Is unused. The second location is
the multiple procede count, The third location Ts the
conditional skip Instruction. The fourth location is
string=-breakpoint byte pointer. The fifth Jocatlon Is the
real contents of the breakpoint |ocatlon,

a 22

te. SAILON #58

APPENDIX B

BREAKPOINTS: sss visz enn

You may have a maximum of 20 (octal) breakpoints at any one
time, The breakpoint information is contained in a table, with five
locations for each breakpoint, The first location of each of the 20
entlies Is given a label of the form $nB, where n Is a number from 1
to 28, This flrst |ocation of each entry contains the address of the
breakpoint In your core. It is «1 If this breakpoint Is uynused,
Entries are assigned to breakpoints in the order In which breakpoints
are created, starting with $1B. The real contents of the breakpoint
location are stored In the fifth of the |ocations In the tahle entry
(l.e. $nB+4). Changing this location, however, has no effect,
because the real contents are repjaced in your core while you are
talking to Raid, and the JSR is placed there only while your program
ls running. The second location In each entry ($nB+1), contains the
multiple procede count for that breakpoint, This Is where Raid puts
the count If you say VAL <ctril 1> P, This count Is counted down by 1
each time you hit this breakpoint and the breakpoint is ignored (You
procede automatically) if the count Is still positive. Depositing a
number here will have the same effect as using multiple procede.
Depositing @ here will| get you out of a multiple procede,

The third word of each entry Is the skip instruction. If this
Instruction is non-zero when Rald hits thls breakpoint, Rald executes
the Instruction (which may be a subroutine call), and what Rald does
with the breakpoint depends on whether or not this instruction skips.
If the Instruction does not skip, Rald does the normal thing (what it
would have done |f this word had been @), namely, it counts the
multiple procede count and procedes If |t Is positive, stops if It is
zero or negative, If the instructlon skips one, Raid does not count
the multiple procede count, but rather it stops at the breakpoint
anyway. If the Instruction skips two, Raid does not count the
multiple procede count, but rather It procedes (ignores the
breakpoint), anyway, The instruction nad damn well better not skip
more tham two.

The fourth location in each entry (SnB+3) Is the string
breakpoint pointer, If it Is not zero, then It is assumed that the
right half points to (addresses) the start of an ASCIZ string, It
had better. The left half doesn’t matter, This ASCIZ string Is then
scanned by the Input scanner, Just as |f you were typlng those
eharacters on you keybourd, every time you stop at this breakpoint,
This means that If you want to display a certain location each time
you hit a certain breakpoint, you can put in the appropriate location

RAT: 23

RAID SAILON #58

a pointer to an ASCIZ string consisting of FOO; (to open location
FOO), When the string runs out, Raid takes input from the keyboard.
If you have been paying attention, you are probably asking yourself
"how do 1 ‘type oontrol bHits?", The answere Is, you don’t,
Fortunately, however, You don’t have to, You can, instead of using
control bits, use a|t-mode. One altmode preceding a character, has
the same effect as typing that character with <ctril 15, Two
alt-rodes Is the same as <ctrl| 2>, and three alt-modes is the same as
ctr! 12>.

MULT] -STEP SPECIAL CONSIDERATIONS: 333131232

When the multi~stepper gets to a subroutine call or return
Instruction, is displays a big star and pauses, waiting for Input,
1f you type S it steps, if you type X It executes, Additionally, if
you type one of these two things, and control blts are on, special
things happen: If you type S with <ctr| 1>, then Raid will no longer
stop on subroutine calls, but will always step them, 1f you typs 'S
with (ctrl 2>, then Raid will no longer stop at subroutine returns,
1f you type S with <etrl 12>, then both things happen. If you type X
with <ctr! 1>, then Raid wll| no longer stop at subroutine gall, but
will always execute them. [If you type X with <ctrl 2>, Rald will no
longer stop at subroutine returns. [f you type X with <gtpl 12>,
both things happen, This state of affairs remains In effect until]
you Stop the stepping, or change |t In the same way You set It,
except that it is clear at the start of eaeh new multi~step command,

74

PROJECT 1:23 ZOZUNENT ROOM S-/4 56UNCLASSIFIED

PROJECT MAC
| AD 650 016

SEF ON-LINE DEBUGGING TECHNIQUES: A SURVEY
{DOCUputKOON Evans, et al

Air Force Cambridge Research Laboratories
L..G. Hanscom Field, Bedford, Massachusetts

January 1967
PROJECT MAC

JUN 26.1967

DOC UMENT ROOM

Processed for . . .

DEFENSE DOCUMENTATION CENTER
DEFENSE SUPPLY AGENCY

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION
= Eg

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

UNCLASSIFIED

NOTICE TO DEFENSE DOCUMENTATION CENTER USERS

This document is being distributed by the Clearinghouse for Federal
Scientific and Technical Information, Department of Commerce, as a
result of a recent agreement between the Department of Defense (DOD)
and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents
which are or have been znnounced in the Technical Abstract Bulletin
(TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.

PROJECT MAGDOCUMENT S-194 54

- JANUARY 1967 BERR ovis 64 mit
INSTRUMENTATION PAPERS, NO. 124 JUN 261367

[DOCU ENTROOM
AIR FORCE CAMBRIDGE RESEARCH LABORA.
L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

On-Line Debugging Techniques: A Survey
THOMAS G. EVANS
D. LUCILLE DARLEY

OFFICE OF AEROSPACE RESEARC.
United States Air Force

BIE NARIere

AFCRL.- 67-0080
JANUARY 1967
INSTRUMENTATION PAPERS, NO. 124

DATA SCIENCES LABORATORY PROJECT 4641

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

On-Line Debugging Techniques: A Survey
THOMAS G. EVANS
D. LUCILLE DARLEY *

% Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts

Reprinted from PROCEEDINGS FALL JOINT COMPUTER CONFERENCE,
Vol. 29, pp. 37-49, 7-10 November 1966

| Distribution of this document is unlimited)

OFFICE OF AEROSPACE RESEARCH
United States Air Force

. 2
wr

ON-LINE DEBUGGING TECHNIQUES: A SURVEY

Thomas G. Evans

Air Force Cambridge Research Laboratories, Bedford, Massachusetts
and

D. Lucille Darley

Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts

INTRODUCTION ment, with the user communicating ‘“‘conversation-
ally” with his computer by means of, typically, a

One consequence of recent interest in the devel- keyboard (or perhaps a display device and light-
opment of large-scale time-sharing systems to provide pen). Inevitably, there exists overlap between on-line
on-line computer access to a large number of users and batch-processing debugging techniques, but our
has been the widespread realization that the useful- concern here is with the former. Second, we are con-
ness of such a system is critically dependent on the cerned with program debugging; one can, of course,
quality of the software provided to facilitate the inter- view a wide range of computer use as the debugging
action between user and machine. In particular, one of something or other; for example, a numerical
area of critical importance for effective utilization of method or a physical or economic model. On occa-
such a system is that of facilities for program debug- sion, of course, this line can be difficult to draw, but
ging. In view of the important role they play, sur- we intend to restrict ourselves to activities concerned
prisingly little attention has been paid to the develop- with the discovery and elimination of program
ment of facilities to aid in the process of on-line “bugs,” in the usual sense, from programs written in
program debugging. Furthermore, much of the work typical assembly and higher-level languages and to
in this field has been described only in unpublished the “subject-matter-independent” facilities provided
reports or passed on through the oral tradition, rather to an on-line user to assist in this process.
than in the published literature. The purpose of this Why do we place such stress on on-line debugging?
paper is to survey the existing work in this area and Is there really so much difference from debugging in
discuss some possible extensions to it, with the dual a batch-processing mode? Yes, we think so. One can,
goal of acquainting a wider public with currently- of course, ignore the conversational aspect of a time-
existing techniques and of stimulating further devel- sharing system and treat it as simply a remote-console
opments. job-initiation system. However, in doing this, one is

What, precisely, is the intended scope of this neglecting a potentially very powerful tool—the capa-
paper? First, we are concerned here only with de- bility (mediated through suitable debugging aids)
bugging activities taking place in an on-line environ- for a very selective and close control over the exe-

R77

38 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

cution of portions of one’s program and for the problems may be economically feasible only in 2
examination of intermediate results, together with time-sharing environment. Furthermore, it is reason-
the possibility of making on-the-spot changes based able to expect that many advances in on-line debug-
on them, as desired. These virtues of on-line access ging will arise from the communities of users that
have been praised many times, of course (and debug- have already begun to assemble about the currently-
ging is only one activity aided by such access—some existing large-scale time-sharing systems, as well as
on-line uses are so dependent on this type of inter- from the expenditure on system programming that
action that they simply have no batch-processing the existence of such communities makes economi-
counterparts). We merely wish to add that these cally justifiable. However, many of the debugging
benefits for debugging are not automatic results of features we shall be discussing had their origins in
providing on-line access; as in other aspects of the work with small machines before the advent of time-
appearance of on-line systems to their users, careful sharing systems.
design of the facilities provided and the conventions In a survey of on-line debugging, a problem of
for their use pays immense dividends in usability. emphasis arises: one might try to convey some of

Console debugging was common before batch- the flavor of the use of typical currently-available
processing monitors were ever heard of. What's so techniques to the reader unfamiliar with any existing
new about on-line debugging? Nothing, really; cur- on-line debugging system; alternatively, one might
rent on-line debugging techniques are the result of try to examine and compare in some detail the most
a gradual development from the days when debug- important features of the existing systems. We have
ging at the computer console was the norm, as it has resolved the problem by attempting both.
remained for small computers over the years. De- The second section of this paper is devoted to a
bugging methods based on single-stepping through consideration of the principal features of past and
parts of a program and on examination and modi- present on-line debugging systems known to us, to-
fication of memory registers by means of console gether with some remarks on implementation, on use
lights and switches were the natural precursors of of displays, and on some implications of the require-
today’s more sophisticated techniques, and there is ments of debugging systems for compiler construction
no sharp dividing line at any stage of the progression. and for hardware. We make no claim of exhaustive
Perhaps the critical step was the replacement of con- coverage. We have discussed those systems which
sole lights and switches by some typewriter-like incorporated features which seem to us to have been
device as the principal means of communication be- interesting or significant contributions to the present
tween user and machine. This permitted the con- state of development of on-line debugging.
venient interposition of suitable system programs to The third section attempts to impart some “feel”
facilitate communication between the user and his for current on-line debugging methods through two
program. At first they permitted him to examine and annotated examples. One represents a session devoted
modify register contents in typed octal instead of the to debugging a program written in a typical (but
binary of lights and switches. At a later stage in the nonexistent) assembly language; the other, a pro-
development they allowed him to associate symbols gram written in a representative (also nonexistent)
with locations in his program and to debug in terms algebraic-type language. The examples are idealized
of them, and still later to debug entirely in terms of in that no one present system contains all of the
the original symbols of his assembly-language or capabilities illustrated (or uses precisely the set of
higher-level-language programs. The capabilities in communication conventions we have adopted), but
this area of current debugging programs will be dis- every feature shown is present in some existing sys-
cussed below. Similarly, a development toward in- tem.
creasing sophistication in the user’s control of the The concluding section contains a few final com-
flow of his program, as well as in other areas, has ments of a general nature.
taken place and will also be discussed later.

What is the relationship of on-line debugging to SURVEY OF EXISTING SYSTEMS

time-sharing? On-line debugging (and on-line use of Assembly-Language Debugging
computers in general) is related to time-sharing only
in the sense that provision for on-line access to a We shall first consider facilities to aid in the de-
machine powerful enough for certain classes of bugging of programs written in assembly language.

ON-LINE DEBUGGING TECHNIQUES: A" SURVEY 39

We have made no extensive effort to disentangle all modify” capabilities available to him could, of
the threads of the earliest efforts at developing type- course, get the effect of breakpoints by inserting
writer-based debugging programs. However, the transfer instructions to appropriate inserted code,
early program which had the greatest influence on but the convenience and freedom from elaborate
subsequent developments was that of Gilmore! for bookkeeping so important to the “iterative” use of
the TX-O computer at Lincoln Laboratory in 1957. breakpoints described above are lost.
It was the first in a series of closely-related and suc- FLIT was a program for a one-of-a-kind machine,
cessively more elaborate debugging programs, in- the TX-O. Consequently, it never became well-
cluding UT-3 2 and FLIT ? for the TX-O (after it known outside its user community at MIT. It was
was moved to MIT), and DDT ** for the PDP-1 at through DDT (written at MIT soon after FLIT
MIT. FLIT, in particular, was a notable accomplish- as its counterpart on the PDP-1 and embodying
ment, embodying capabilities on which much sub- much the same set of capabilities, including those
sequent work with on-line assembly-language de- sketched above) that these notions were extensively
bugging has been based. With FLIT, for the first spread about as the PDP-1 became a relatively
time, it was possible for the user to examine and widely used machine. In this way, FLIT and DDT
modify his program in terms of the symbols used in became the acknowledged source of a large portion
his source program and, in fact, to examine and of the assembly language debugging programs in the
change the contents of registers in a form almost major currently operating time-sharing systems pos-
identical to that used in the corresponding assembly sessing such facilities.
language. Furthermore, while some earlier type- One of the most important characteristics of FEIT
writer programs had permitted one-instruction-at-a- and DDT was the care devoted to the design of the
time tracing of a prograni, by analogy to the console typing conventions. Single-letter commands and a
single-step switch familiar to their creators, FLIT structure in which frequently desired states could be
introduced what is perhaps the central notion of reached easily from the present one (e.g., look at the
interactive debugging, that of a user-controlled contents of the current register ==1, look at the con-
breakpoint. This technique, which we shall see illus- tents of the register addressed in the current register)
trated in both assembly-language and algebraic- minimized typing and aided rapid interaction. Simi-
language debugging in a later section (“Examples— larly, convenient ways of typing the contents of a
Two Debugging Sessions”), consists of permitting given register in alternate formats (e.g., symbolic,
the user to specify (symbolically, typically) a point decimal, octal) were provided.
or points in his program at which he wishes to inter- Starting with these capabilities, extensions have
rupt its flow and return to the debugging routine, been made in a number of directions in more recent
which at entry stores the state of the live registers to work. We shall discuss some of these. With the capa-
permit subsequent continuation from the breakpoint, bility for input of machine instructions in symbolic
then permits the user to examine the state of his assembly-language form, DDT is already nearly an
program at that point and make changes, if he “on-line assembler,” suitable as the sole tool for on-
wishes, before continuing. All that is required is that line writing and testing of small programs. With this
the debugging program save the user’s instruction at use in mind, Edwards and Minsky * added an “un-
the desired breakpoint location and plant in its place defined symbol” capability to DDT. In conventional
a suitable transfer to itself. The effectiveness of the DDT, input of a line of code involving a symbol not
technique is dependent, of course, on the ease to the already defined by the user results in an error mes-
user of placing and removing breakpoints and on the sage. In their version, it results in a special symbol
quality of the facilities for examination and modifica- table entry. Such entries are linked together, and
tion available to him while at a breakpoint. With when the symbol is ultimately defined by the user
judicious use, the breakpoint can be a very flexible its previous occurrences are filled in appropriately.
tool, giving the user great selectivity in the degree of This capability has also been included in the assem-
fineness of his examination of a portion of a program. bly-language system ’ of the Berkeley time-sharing
In the hands of an experienced user, it can permit system (SDS 940).
quite rapid isolation of many types of program error. DDT permits the user unlimited freedom to patch
Here, as in other aspects of on-line work, conven- his program arbitrarily by inserting whatever he likes
ience is critical. The user with only “examine and in some available space, then planting a transfer to

4 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

this insertion in his program wherever he desires. as in the system discussed previously—is a thorough-
This very freedom, unfortunately, can lead to situa- ly trivial and inessential one.
tions in which debugging of complex programs ulti- 2. Instead of a patch being made corresponding
mately bogs down in a morass of patches on patches. to the user’s change, the part of the program affected
Furthermore, even when a highly patched program by the change is relocated appropriately in core. If
has finally been made to perform satisfactorily, the the change is an insertion, for example, the new code
road to a corresponding ‘“cleaned-up” symbolic ver- is assembled into the space left vacant by the reloca-
sion of the program can still be a very long and tion of the program from that point on. This reloca-
error-susceptible one. We know of two efforts to tion process is possible only because the relocation
incorporate at least partial solutions to these book- information resulting from the assembly of the user’s
keeping problems into assembly-language debugging program, in addition to being used by the relocating
systems. In one approach, followed by Lampson ® in loader, is collected by it into a list structure which is
the design of one version of the assembly-language used by the debugging program each time a program
debugging facilities in the Berkeley system, the user change is called for by the user, then updated accord-
requests the insertion of a specified piece of sym- ingly. The symbol table passed by the assembler to
bolic code starting at a specified symbolic location the debugging program must also be updated each
in his program (or deletion of a portion of the exist- time. Thus the idea of “patching” disappears com-
ing program, or both). In response to this request, pletely. This relocation process can be rather time-
the debugging program performs two distinct consuming on large programs, but has certain
activities: compensating advantages over the (quite fast)

: . . “automatic patching” approach of Ref. 8. In particu-1. It edits the user’s changes into his sym- ; er £ app . pan
: lar, it avoids the two drawbacks of his system listed

bolic program stored on the drum. bY 1 Sinton:
2. It assembles the user’s addition into a ¥ pen:

“patch area” of core and automatically a. In situations in which location of words
links the resulting code to the user’s pro- in core relative to each other is important
gram in a straightforward way by copying (for example, subroutine calls picking up
instructions and inserting transfers, as nec- arguments from following locations), the
essary. patched binary and the edited symbolic

Thus, at each stage of the debugging process, the By em wr
user’s patched binary program in core is “computa- Bijhs an a, je De TE sal
tionally equivalent” to the edited version of his Coren 9 5 on oh a So, re Ne
symbolic on drum. At the completion of the debug- B oe y on o x
ging session, the user’s updated symbolic is stored TeAdaniny. rion exampiey he um
7 : wishes to insert a breakpoint at an 1nstruc-

again among his files. A Wi ;
: : tion inserted during one of his previous

An earlier approach ° to the same problem, taken Beli; : modifications must track down the present
by the present authors in work with an assembly- : ; ;: location of that instruction by finding and
language debugging system for the M-460 computer a : :: : : Ly following out the patching. Thus, much of
at Air Force Cambridge Research Laboratories, 1s : bi; : RN ; : the advantage of automatic patch inser-
quite different in implementation. Once again, the ; a: : : : 3 tion could well be nullified.
on-line user presents insertions, deletions, or a mix-
ture of both (again in symbolic assembly language) Any evaluation of the two approaches must bal-
to the debugging program, using a quite similar set ance the added program complexity and computa-
of conventions. Once again two actions are taken: tion time required by the relocation approach against

1. The symbolic changes are stored in a form the possible cost in inconvenience to the user of the
suitable for entry, along with the original symbolic above difficulties (or, alternatively, the cost in com-
program, to an editing: program at the end of the putation time of the additional assemblies that may
debugging session. This is automatically done and be required to preserve sufficient readability).
the user provided with an updated symbolic file. One further extension to DDT in more recent
This difference—saving' the corrections to do all the work pertains to the use of breakpoints. In addition
editing at one time vs editing for each correction, to the flexibility in the placement and moving of

0

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 41

breakpoints which is already present in DDT, a fied). Currently no assembly-language debugging
facility has been added in a number of debugging system appears to have quite this full capability,
programs (including those for the SDC time-sharing though PDP-6 DDT '"! and the SDC DBUG pack-
system,’ the DEC PDP-6,"" and the M-460 at age '° are close. Both are limited in the amount of
AFCRL) permitting the user to make the break- information that can be specified in advance to be
points conditional; when the breakpoint location is printed at a break—in the PDP-6 DDT to one regis-
reached, some test previously supplied on-line by ter and in DBUG to one register or a live register
the user is executed to determine whether the break dump or a dump of some block of registers. Further-
is to be made (that is, control turned over to the more, as mentioned above, DBUG does not permit
user) or whether execution of the user’s program the composition of elaborate conditions for a break
should continue. This technique permits still greater to occur.
selectivity; the user can run his program till some Another desirable feature not widely found in cur-
specified condition prevails at a specified point, then rent assembly-language debugging systems is exten-
examine the program state in whatever detail he sibility, in the sense of the capability for conveniently
wishes. The SDC system gives the user a choice of defining complex debugging operations in terms of
a number of built-in conditions; the other two permit the available primitives. The most general existing
the user to insert an arbitrary piece of assembly- facility of this type appears to be that described in
language code as the break test associated with each Ref. 8, where the macro-expansion capability of the
breakpoint. Ideally one would like to combine assembler used to process input to the DDT lends
“canned,” easily specifiable tests for certain com- itself quite naturally to this purpose.
mon situations with the capability of writing arbi- Programs of the DDT family have many useful
trary tests when desired. DDT, incidentally, had 2 features in addition to the ones we have described.
rudimentary but often useful form of the conditional As one example, it is typically possible to conduct
breakpoint which has been preserved in several later a search between specified limits in core for all words
systems; upon insertion of a breakpoint, the user may matching a given word in the bits specified by a
specify (simply by preceding the command with a given mask.
number n) that the break is not to occur until the
nth time that that point is reached in the execution Higher-Level-Language Debugging
of the program.

A possibility we have not yet examined, but which When we turn to the examination of on-line de-
forms a basic tool of some early on-line debugging bugging facilities for programs written in higher-
programs, is that of instruction-by-instruction trac- level languages comparable to those we have con-
ing. More sophisticated versions of such tracing, with sidered for assembly-language programs, we find
considerable flexibility available to the user, have that, broadly speaking, a close analog of almost every
been incorporated in debugging packages for batch- principal assembly-language debugging technique
processing use, but such tracing features have exists in at least one debugging system pertaining to
typically been omitted from more recent on-line some higher-level language. However, on-line de-
systems in favor of the breakpoint, on the grounds bugging facilities for higher-level languages are in
that tracing represents a failure to make the most general less well-developed and less widely used (rel-
of the capability for intensive interaction pos- ative to the use of the languages) than their assembly-
sible in such a system and, at best, tends to pro- language counterparts. In part, this situation is prob-
duce considerable irrelevant printout, a serious ably a consequence of the wide diversity of langtiages
consideration for an on-line user. However, it in this class; probably it is still more a result of the
seems to us reasonable to provide some tracing fact that the small machines on which the assembly-
capabilities in an on-line system, especially since language techniques originated and were cultivated
they can share much of the machinery already were typically considered too small to support higher-
provided for breakpoints. The user should be able level language compiling systems and were pro-
to specify a location in his program and ask either grammed almost exclusively in assembly language.
for the printing of certain information, for control, Thus work in on-line debugging of higher-level
or for a combination of both whenever that program languages is of comparatively recent origin. We shall
point is reached (and a specified condition is satis- be examining debugging systems for relatively few

r- PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

languages in relatively few on-line computing sys- debugging, as it is possible to use the full capabiity
tems. This is not to say that much more on-line of the LISP language for the on-line composition of
debugging (in the sense that the user at a remote the conditions. Thus one can easily express an
console starts his program, examines the final results elaborate logical condition for which the counter-
or diagnostics in essentially the manner of batch part in assembly language might be quite complex.
processing, edits his program, and tries again) is not Furthermore, by “canning” a few useful special pred-
taking place in these and other systems with these icates for use in writing conditions, even more
and other higher-level languages. However, we are selectivity in suppressing irrelevant tracing and
concerned especially with efforts to obtain systems breakpoints can be attained. For example, in M-460
which permit the on-line user something like the LISP there is a machine-language LISP function
flexible control over the execution of his program which examines the interpreter’s pushdown list to
and the capability of examining and modifying it that answer the question: “At this point in the execution
are available to the one-line user of the assembly- of the program are we inside a call to function X?”
language debugging aids we have discussed. Incidentally, the ability of LISP to handle recursion

The language for which perhaps the most effort has proved very useful in debugging—the full capa-
has been expended in the development of on-line bility of the LISP system is available at a breakpoint
debugging aids is the list-processing language LISP inside a function being executed. With some care,
1.5. However, no discussion of these debugging fea- it has been possible, for example, to find a bug while
tures has appeared in the literature; they are far from at a breakpoint in running a test case, call the editor
completely described even in internal memoranda. to make a correction, run the program on a simpler
The first two full-scale on-line implementations of test case to verify the correctness of the change, then
LISP were those for the MAC system >? (a modifi- resume execution of the original test case from the
cation of the batch-processing LISP system for the breakpoint (without the addition of any special ma-
IBM 7094 to run under the MAC time-sharing sys- chinery to the system for saving and restoring a pro-
tem) and for the M-460 computer at AFCRL. Sub- gram state, etc.).
sequently, on-line LISP 1.5 systems have been cre- At this point, it should be mentioned that both
ated for the SDC time-sharing system,'* the Berkeley LISP systems mentioned contain both an interpreter
system,’ the DEC PDP-6,'° and the DEC PDP-1 (of LISP functions stored as list structures) and a
at Bolt, Beranek, and Newman, Inc.!" We shall dis- compiler (of LISP functions into machine code),
cuss only the debugging features of the MAC and and that interpreted and compiled functions may be
M-460 systems, as the later systems contain essen- quite freely intermixed. The existence of the inter-
tially no debugging aids not already present in these. preter made the implementation of the debugging

First, the extensive tracing facilities of the LISP facilities described above relatively simple. For ex-
system were made accessible to the on-line user. ample, insertion of breakpoints at arbitrary locations
Later, they were extended and made conditional in in a LISP program is readily implemented by modi-
both systems. An editing program—not a conven- fying the list structure corresponding to the program
tional text editor but a program permitting the user so as to call the breakpoint-handling routine appro-
to modify the list structure in which LISP functions priately. In addition, interpretation has the advan-
are stored for interpretation—was introduced by tage that various types of user errors may be con-
Martin into the MAC LISP system and soon modi- veniently detected at run time. A further advantage
fied for use in M-460 LISP. This editor proved to in this case is that LISP is precisely a language for
be a powerful tool, permitting quite easy program manipulation of list structures so the breakpoint
modification in many cases. Conditional breakpoints insertion routine, among others, could itself be writ-
(insertible at any point in a LISP function defini- ten entirely in LISP. On the other hand, the feature
tion) were introduced. into the M-460 LISP system in LISP that permits tracing of entries (with printing
by one of the present authors—apparently, along of arguments) and exits (with printing of values)
with the introduction of breakpoints into the SDC of specified routines applies to both compiled and
IPL-V system by Weissman, their first use in interpreted routines. However, the usual mode of
higher-level language debugging—and soon after in- operation in the systems mentioned has been to de-
corporated in MAC LISP. Conditional breakpointing bug interpretively, then compile the debugged pro-
and tracing have proved quite powerful for LISP grams in cases where the great speed advantage to

3

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 43

be gained by compiling is important. In general, TRAN, labeled statement) may be inserted and de-
interpretation presents similar advantages for other leted. However, no facility is provided to modify
higher-level languages, and we shall see below that portions of the user’s program (in both systems, a
it has furnished the basis for on-line debugging sys- user familiar with the code produced by the com-
tems for other languages, as well. We shall also piler could, of course, use the available assembly-
mention two systems which work with a compiled language debugging facilities to make such local
program. Then we shall consider one effort to de- modifications). The only way to make program
sign a system combining interpretation and compila- changes is to edit the symbolic version and recom-
tion, with the intention of combining the speed pile the whole program.
advantage of compiled programs with the ease of The notion of an “incremental” compiler, in
modification that comes with interpretation. which only those portions of a program to be

The well-known QUIKTRAN system * is based changed need to be recompiled, has been frequently
on interpretation of FORTRAN statements. The discussed; Lock 22 at California Institute of Tech-
FORTRAN program under debugging may be modi- nology has given a detailed sketch of the design of
fied freely by insertion and deletion of statements. A a system with such capabilities. The notion is to
form of nonconditional breakpoint capability is in- compile each program statement separately and
cluded in the sense that a statement can be inserted place the resulting code, together with a copy of the
at any point in the program which, when reached, has symbolic form of the statement and certain pointers
the effect of transferring control to the user. Capa- and other information, depending on the type of
bility for examining and modifying variables is statement, in a contiguous block of core. These
present, as well as a variety of modes of tracing blocks would be linked together in lists. Since the
(print all assignments to variables in a given portion language in question is ALGOL, in .which “state-
of the program, all assignments to selected variables, ment” is a recursively defined concept, one has a
all control transfers within a specified region, etc.). list structure (lists with elements which are lists,
Furthermore, extensive run-time diagnostics made etc.) instead of the one-level list of statements one
possible by the interpretive mode are provided, and would have with, for example, FORTRAN. Inser-
several unusual “bookkeeping” features, similarly tion and deletion at the statement level proceed
based on interpretation, are available, such as the straightforwardly by modification of this list struc-
AUDIT command, which generates information as ture. Control is returned to a monitor between state-
to which portions of the program were never exe- ments (this is a property of the code generated for
cuted, which variables were never set, or set but each statement) permitting, among other things,
never used, during a given execution of the program. breakpoint capability at the statement level (though

Another on-line debugging system based on inter- the author proposes simply a single-statement mode
pretation is that for IPL-V in the SDC time-sharing of operation modeled, apparently, on single-step-
system.’ It contains (nonconditional) breakpoint switch machine-language debugging). The scheme is
and tracing capabilities similar to those sketched interesting and quite ambitious. It remains to be seen
above for LISP. whether the organization based on compiled state-

The FORTRAN debugging system 2° for the ments with interpreted flow of control between them
Berkeley time-sharing system and the MADBUG leads to significantly faster execution times than pure
system *' for the debugging of MAD language pro- interpretation with a well-designed internal repre-
grams are very similar in their debugging capabili- sentation such as that of QUIKTRAN. One possible
ties, though different in overall scope: MADBUG modification in the scheme would be to arrange
contains a set of editing facilities as well, while things so that the code in the block corresponding
editing of FORTRAN symbolic programs is carried to a statement transfers, not back to the executive,
out in the Berkeley system by use of a general- but to what at that point is the correct next state-
purpose editing routine present in the time-sharing ment. The executive would maintain a table of these
system. In both cases debugging is performed on a transfer locations and “breakpoint” them, so to
compiled version of the program, and the user can speak, whenever this was called for (as a result, for
readily ask for the values of variables and change example, of a breakpoint request by the user). Thus,
them. Breakpoints (nonconditional, as it happens) at the cost of some additional complexity in the
at any specified statement (in the Berkeley FOR- executive. almost all the speed advantage of full

. PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

compilation would be realized with no loss in the debugging tool. Other work at Lincoln Laboratory
capabilities available to the user. is directed toward dynamically mapping out on a

It seems appropriate to mention at this point a display device the behavior of a more convention-
class of languages of which JOSS, BASIC, and ally-constructed program by means of a flow dia-
TINT are the best-known examples, even though a gram, which is again expected to be a useful de-
principal characteristic of these languages, especially bugging aid.
the first two, is their lack of anything which looks 2. Another area of contact between hardware and
like the tracing or breakpoint features we have dis- debugging is involved with trapping. Program-con-
cussed. These are “small” languages designed pre- trollable facilities for trapping on certain machine
cisely for easy learning and convenient on-line use conditions give promise of being a very important
for problems requiring a numerical computing ca- debugging aid. The TX-2 computer at Lincoln Lab-
pacity somewhere between a desk calculator and the oratory, for example, has recently been provided
typical “FORTRAN + large computer” installation. with a quite powerful interrupt system of this nature,
In all three languages, insertion, deletion, and modi- which has been made accessible to the on-line user
fication of statements is extremely easy; since this is through commands to a DDT-like program.2¢ The
so, the effect of tracing and breakpoints can be user may ask for a trap on any combination of a
achieved for the small, relatively simple programs in number of conditions, such as a store into a specified
question by insertion of print and halt statements register, execution of an instruction at a specified
respectively. Thus, at the borderline of the class of location, or execution of any skip or jump instruc-
languages and associated debugging tools that we tion. The debugging program handles the interrupt
have discussed earlier we find a class of languages and reports the relevant information to the user.
that have rather effectively transcended the need for
such tools by careful design and ruthless simplifica- EXAMPLES: TWO DEBUGGING SESSIONS
tion of language structure corresponding to the set-
ting of limited objectives for the range of usefulness Assembly Language Debugging
Sidhe tanpuage. Assume we wish to debug the following program

Hardwire Aspects (written in a typical—but mythical —assembly lan-
guage), which is meant to perform a simpleminded

There are many points of interaction between exchange sort on a table of five numbers.

computer hardware design and the design of soft-
ware debugging facilities. We shall mention just two: Bist pze

Crs call readf
1. The capabilities of user consoles have a great :

impact on the range of debugging facilities. Suppose bei gatat
the user is provided with a display device in addi- pze table
tion to (or instead of) his keyboard. One may use lix nm2,1
this added capability relatively conservatively as an loop lda table+1,1
extension of facilities already present. For example, sub table. 1
the Edwards-Minsky version of DDT already men- sma
tioned © used a display to permit the user much more jmp ok
rapid and convenient examination (in symbolic and Ida table, 1
octal) of his program in core than would have been 1dq table +1,1
feasible with a typewriter alone. Programs to display sta table +1,1
core in octal already existed more than 10 years

23 stq table, 1
ago.?® Other, more radical uses of display devices in :. ee . ok tiz 42,1
debugging are now being investigated. Flow-chart ;
languages, where programs are created on-line by jmp loop
generating a flow chart with a light-pen, are being ret sort

dynamic display of the program state at any point table bss 3
in terms of the flow chart is expected to be a useful end

4

Or

=

ON-LINE DEBUGGING TECHNIQUES: A SURVEY as

(This is admittedly a trivial program which should including live registers, by typing the symbolic name
not need the elaborate debugging facilities we have plus a tab. The computer will respond with the con-
discussed; however, it should serve to illustrate the tents of the register in symbolic format, tab, and
application of these techniques in an otherwise rea- wait for us to modify the contents of the register.
sonably realistic context.) If we don’t wish to, a carriage return signifies this.

We assume that, previous to this debugging ses- Index register 1 is important in our program, so we
sion, we have stored our symbolic program as a examine it:
file, either by reading in cards or paper tape, or by oe 0
typing the program in directly from our console. We
then assembled our program from the file and We see that this value is incorrect. The instruction
created a new file containing the loadable form of at loop-1 supposedly loads index register 1. We
the program as well as the symbol table. We omit check it:
describing these procedures in detail, for the process hak: : loop-1 lix nm2,1
of controlling an assembly on-line and the error
diagnostics received are much the same as assem- This is apparently correct, so we check nm2:
bling off-line (with, however, the advantage that any
errors detected by the assembler can be corrected am? D
immediately). We also assume that a test case file This is our error. We neglected to initialize nm2. We
called datal (which will be read. by our program) give the following command:
has been written. For definiteness, assume it consists C hm
of the numbers 3, 5, 2, 1, 4 in that order.: : nm?2 oct 3

The loading system has brought our program into
core and has left us in contact with the debugging which says to change the contents of the register
system, which it has supplied with the symbol table labeled nm2 to whatever follows; in this case, the
for our program. We immediately attempt to execute register is to carry the same label but contain the
the program by typing: number 3, the length of our table minus 2. Our pro-

G sort gram is physically changed in core, and the neces-
: ps . i sary information concerning this change is saved so

(This calls sort, which is written as a subroutine.) it ih be given to an a program at the conclu-
The debug Sysiem responds With 3 eatinge retumn, sion of our debugging session. We remove the break-
indicating completion of our program. We type: point inserted earlier by typing:

P table; table + 4 B1
which prints:

- and then start the program again. Again the debug
table :

system carriage returns. We now check the contents
of the table, as before:

“Mle)

That is, the table we input is unchanged. Examining
our program, we note that the instruction at ok per- “
forms a test for the end of a pass through the table. :

It seems a plausible instruction to monitor, so we Obviously not all of the ordering is correct. Perhaps
insert a breakpoint (number 1) there: it would be useful to reinsert the breakpoint at ok,

Bl ok since it is the instruction immediately following the
and then execute the program again. The computer instructions that switch the contents of registers.
responds with: However, we would like to break here only if an

exchange did occur, and at the break we would like
ok to print the contents of the two registers in the table

indicating that it has reached the breakpoint. At this that were switched. This allows us to monitor the
point we can examine whatever registers we wish, successive changes in the table, so we can see at

tak,

‘ PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

what point something goes wrong. We insert this ok
type of breakpoint by: table 1

table +1 3
B1 ok: P table,l; table+1,1: C
BIC which is correct as far as it goes, but after the above
Ilda table + 1,1 printout the debug system carriage returns, again
sub table, 1 indicating that our program has returned. Looking at
spa our program again, we see that we left out the outer
end loop in our coding and are making only one pass

through the table. We make the following changes:
The first line indicates that breakpoint 1 should be
inserted at ok and when that point is reached two I'sort+3
things should be printed out: the contents of the loop2 stz switch
register at (table + the contents of index register 1), Lioop+3
and the register at (table+1 + the contents of index idx switch
register 1). C means to continue after the printing Iok+1)
without transferring control to the user. The second Ida switch
line indicates that we are going to give a condition Sza
for breakpoint 1, and the next three lines are the jmp loop2
condition, with the instruction following the spa I nm2
(skip on positive AC) the break branch and the switch pz
instruction following that the proceed branch. With The first change inserts an instruction labeled loop2
each breakpoint the debug program associates three after sort+3 to initialize the register labeled switch,
registers that are used in determining if a break which is at this point undefined. The second change
should occur when the breakpoint has been reached. inserts an instruction after loop+3 to increment the
Initially, and each time a breakpoint is removed, the contents of switch. The third change is to insert
three registers appear as: three instructions after ok+ 1. They again refer to

nop. (1a Operation) switch and also to loop2, which was defined in the
first change. The fourth change defines switch, and

(return for break to occur) at this point all references to it are automatically
(return for no break to occur) filled in.

With this arrangement, a break occurs each time the We now run our program ‘again after removing
breakpoint is reached. When a condition (other than the breakpoint and type out the results Bs above :
a single skip instruction) for a break is entered, as This time the table is fully sorted. At this point in
we did above, the nop instruction is automatically our Ci Session we Si that %s now py
changed to a jump to a patch region where the code A WOTKIng program m wide 9 oo ii Symbodc
we supply is inserted. The first register following this vaar: SE, SE ia
code is assumed to be the break condition and a
jump is inserted there to the first return. The second font) 2 onoo a Tent with aif Seige
instruction following the code is set up as a jump he i a a— we by oy
bogie second rem, . specified. Our final (purportedly debugged) program

We now execute our program again and get the looks Hike this:
following results:

Se zeok call ~.readf
table +2 1 bei datal
table +3 2 pze table

loop2 stz switch
ok lix nm2,1
table + 1 1 loop Ida table+1,1
table+ 2 5 sub table, 1

46

eort

ON-LINE DEBUGGING TECHNIQUES: A SURVEY -/

sma run our program (named sort) by typing G sort,
jmp ok as before. In this case, we conclude after a re-
idx switch spectable interval that our program is looping. By
Ida table, 1 striking the interrupt key, we return to the debugging
dq table + 1,1 program. We realize that we have failed to provide
sta table +1,1 a test to escape from the program after a pass
stq table, 1 through the table generates no exchanges. We there-

a tiz +2,1 fore make several additions to our program, as fol-
jmp loop lows:
Ida switch I loop 1
sza ;init: switch<false;
Jp loon? (which means insert the labeled statement setting the
vet Sort Boolean variable switch to false after statement

ng get 3 loop —1, that is, then “readfile” statement).
switch pze
table bss 5 Glan? -

end ;if switch then go to init elseexit;
(which means insert the statement testing the vari-

Higher-Level-Language Debugging able switch instead of the statement last+ 1, that is,
“go to loop”). And finally:

Our example of on-line debugging of a higher-level- Nt 5
language program will be shorter than the preceding Liao pe 2, :
assembly-language example, since we simply wish to sWiichestruie;
show that the facilities exhibited there for control of (which means insert the statement setting the vari-
program flow and for examination and modification able switch to true after the second statement of the
of program and data have their counterparts at other compound statement at location loop +2).
levels of language as well. Correspondingly, our pro- To verify the last change, for example, we can
gram example is even more trivial; it is the same type
exchange sort programmed in a typical (but again E loop+2
mythical) algebraic language with the same sort of which prints:
(admittedly implausible for a program of this sim- i !)
plicity) errors. begin table (i) «table(i+1);

Again we assume our program has previously been table (i+ 1) «table(i);
made into a symbolic file, then compiled and loaded. switch«true
We shall test it on the same file (datal) as we used end
in the previous example. Our program reads as fol- Now we try running our program again. This time it
lows: terminates and returns control to the debugging pro-

program sort; gram. However, when we examine the results by
array table (5); typmg:
readfile (datal, table) ; P table (1) table (5)

loop: for ie1 step 1 unit 4 do through last; we get:
if table(i) <table (i+ 1) goto last; table(1) =1
begin table (i)<«table(i+1); table(2) =1

table(} +1) «-table(}) At this point we interrupt the printout, since our
ond; answers are clearly in error. We insert a breakpoint

last: continue; at the statement labeled last and add the condition
goto loop; that we break only if switch has been set to true, by

finish typing:
(readfile is a system routine that we, call to fill the B1 last
array named table from the file named datal). We B1C switch

A”

ok

4% PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

We run the program again and get the breakpoint bugging in a batch-processing mode, though Ref. 27
printout: represents a first effort in this direction and will

Tash presumably be followed by others. Meanwhile, we
: i ; : can only record our subjective impressions of a

We examine the indexing variable: quite widespread enthusiasm for the utility of on-line
i 2 debugging facilities among those with whom we have

So we look at: discussed the subject.
What are some criteria for a good interactive de-

table(2)] bugging system (for an experienced user)? We shall
table (3) } try to abstract some (perhaps platitudinous) prin-

This tells us we're doing the exchange wrong. We ciples from the wide variety of systems considered
see that we are destroying table(i) too soon, and above:
correct this by typing:

1ioop+20 The user must have fiexible control
etme tablet); over the execution of his program. He
: 2 must be able to specify this control in

and terms of the natural units, small and
Cloop+2,3 large, of the language in question and
stable (i+ 1) «tem; be able to carry this control down to

and rerun our program. This time, when we examine the finest level of detail, if required (a
table, it is properly ordered. We terminate the ses- single Instruction in assembly language,
sion, as before, by passing the accumulated correc- or single noncompound statement in an
tions to the editing program, which updates our ALGOL-type language). Bi
symbolic. The final version of our program looks The user must be able to examine and
tike: “incrementally” modify both data and

program at any time and do so in
program sort; terms of the notation of the language

array table(5); of the program.
readfile (datal table); The conventions of the debugging con-

init: switchefalse; trol language should be designed to
loop: for i«1 step 1 until 4 do through last; minimize typing and should convey in-iftable (i)< table(i+ 1)gotolast;formationtotheuserasconciselyasisbegin teme—table(i); — compatible with rapid comprehension.

Ee . oe Automatic updating of a user’s sym-
table (i) «table(i+1); : ots v5 aie :

tablet 1} e-tom: bolic file in parallel” with modifica-
: tion of the in-core representation of his

swilchentive program should be possible, to elimi-
end; nate a distinct separate phase of

last: continue; cleanup of the symbolic and re-
if switch then goto init else exit; debugging.

finish
Once again, in conclusion, we stress that the pro- Bach of these aap abitities jf ow preten, 5s we

grams used in the examples of this section were not Hoy SN © Some degree i Some SlpyShi Sysems
intended as representative of those for which such With feasitilily dis gemanstraied, mn the nor fue

: : Wo we shall presumably see the integration of features
on-line debugging facilities are necessary or even ; : :
appropriate, but rather as uncluttered vehicles for taken from ihiase systems il Somprohiensive online
some simple illustrations of the use of these facilities. doteizging Systems possessing aii phe gos! abls har.

acteristics listed above. Incidentally, this seems to
SOME FINAL REMARKS present an opportunity for some valuable voluntary

standardization; if the appearance to the user of the
Very little data seems to exist on the relative debugging system for a given language could be

efficiency of on-line program debugging versus de- made the same over a number of future time-sharing

[9

ON-LINE DEBUGGING TECHNIQUES: A SURVEY 49

systems (at least to the degree that the language in 7. L. P. Deutsch and B. W. Lampson, “DDT
question is itself standardized), considerable savings Time Sharing Debugging System Reference Man-
could well be realized. At any rate, this would seem ual,” Document #30.40.10 (rev.), Univ. of Calif.
to be an opportune time to consider the possibility. Berkeley (May 1965).

In addition to consolidation of known techniques 8. B. W. Lampson, “Interactive Machine Lan-
into comprehensive, widely available systems, one guage Programming,” Proc. FICC, 1965.
can also expect the development of a variety of new 9. T. G. Evans and D. L. Darley, “DEBUG—An
approaches; in particular, we have mentioned re- Extension to Current Online Debugging Tech-
search which seeks to exploit the full capabilities of niques,” Comm. of the ACM, vol. 8, no. 5 (May
displays for debugging, as well as the potential value 1965).
for debugging of flexible programmable interrupt 10. R. R. Linde, “Q-32 Time-Sharing System
capabilities in computer hardware. User's Guide Executive Service: Debugging

Considerable interest has been shown in recent (DBUG),” TM-2708/390/00. Syst. Devel. Corp.
years in the development of methods for proving (Apr. 1966).
that a given computer program has certain proper- 11. “PDP-6 DDT Manual,” Digital Equipment
ties. If this avenue of research proves successful, we Corp., 1965.
may one day see the virtual elimination or at least 12. W. Martin and T. Hart, “Time-Sharing
diminution in importance of the program debugging LISP,” Memo MAC-M-153 (rev. 1964).
process. Until then, debugging will remain a critical 13. W. Teitelman. “EDIT and BREAK Func-
phase and potential bottleneck in the effective utili- tions for LISP,” M in MAC-M-264, MIT (1965).

Si of computor: NE suggestad Ton, 14. S. L. Kameny, “LISP 1.5 Reference Manual
rom a period in whic the imitations on computer for 0-32.” TM-2337/101/00, Syst. Devel. Corp.

use were in core size and in sheer lo S Svough (Aus 1965)
rocessor cycles to go around, followed by one o : : : 5

Ji of Se en we are now entering an 15. L. P. Deutsch and 2 W. Lampson, “Refer-
era in which computer use is “debugging-limited.” Shee Manual-—930 1138p, Document #30.50.40
If this is so, the development of improved on-line (rev.), Univ. of Calif., Berkeley (Nov. 1965).
debugging facilities would seem to be a particularly 16. P. Samson, “PDP-6 LISP,” Memo MAC-M-
fruitful and valuable endeavor, as well as a quite 313, MIT (June 1966).
fascinating one. 17. D. G. Bobrow et al, “The BBN-LISP Sys-

tem,” AFCRL-66-180, Bolt, Beranek, and Newman,
REFERENCES Inc., Cambridge, Mass. (Feb. 1966).

18. J. E. Schwartz, E. G. Coffman, and C. Weiss-
1. J. T. Gilmore, “TX-O Direct Input Utility Sys- man, “A General-Purpose Time-Sharing System,”

tem,” Memo 6M-5097, Lincoln Laboratory, MIT Proc. SICC, 1964.
(Apr. 1957). 19. T. M. Dunn and J. H. Morrissey, “Remote

2. C. Woodward, “UT-3: A Direct Input Routine Computing—An Experimental System,” ibid.
for TX-0,” Memo M-5001-1, Dept. of Elect. Eng’g., 20. C. S. Carr, “FORTRAN II Reference Man-
MIT (July 1958). ual,” Document #30.50.50, Univ. of Calif., Berke-

3. T. G. Stockham and J. B. Dennis, “FLIT— ley (Feb. 1966).
Flexowriter Interrogation Tape: A Symbolic Utility 21. R. S. Fabry, “MADBUG—A MAD Debug-
Program for TX-O,” Memo 5001-23, Dept. of Elect. ging System,” in The Compatible Time-Sharing Sys-
Eng’g., MIT (July 1960). tem, A Programmer's Guide, 2d ed., MIT Press,

4. R. Saunders and R. Wagner, “On-Line De- Cambridge, Mass., 1965.
bugging Systems,” Proc. IFIP Congress, 1 956, Vol. 22. K. Lock, “Structuring Programs for Multi-
2, Spartan Books, Washington, D.C. program Time-Sharing On-Line Applications,” Proc.

5. A. Kotok, “DEC Debugging Tape,” Memo FICC, 1965.
MIT-1 (rev.), MIT (Dec. 1961). 23. T. G. Stockham, “Some Methods of Graphi-

6. D. J. Edwards and M. L. Minsky, “Recent Im- cal Debugging,” to appear in Proc. IBM Scientific
provements in DDT,” AI Memo #60, MIT (Nov. Computing Symposium on Man-Machine Communi-
1963). cation (held May 1965).

PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

24. W. R. Sutherland, “On-Line Graphical Speci- 27. E. E. Grant, “An Empirical Comparison of
fication of Procedures,” presented at SJICC, Boston, On-Line and Off-Line Debugging,” SP-2441, Syst.
Mass., 1966 (unpublished). Devel. Corp. (May 1966).

25. T. O. Ellis and W. L. Sibley, “The Grail 28. M. Halpern, “Computer Programming: The
Project,” ibid. (unpublished). Debugging Epoch Opens,” Computers and Automa-

26. T. G. Stockham (personal communication). tion, Nov. 1965.

50

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY pis vie author) ~ | 2a. REPORT SECURITY CLASSIFICATION
Hg AFCRL, OAR (CRB Uniclagiiti’ ssified
United States Air Force I eRouP
Bedford, Massachusetts 01730
3. REPORT TITLE

On-Line Debugging Techniques: A Survey
STAT
a. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Journal Article. Interim.
5. AUTHOR(S) (Last name, first name, initial)

EVANS, Thomas G. and DARLEY, D. Lucille

6. REPORT DATE 70 TOTAL NO. OF PAGES 7 NO. OF REFS

January 1967 20 28
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBER(S)

AFCRL-67-0080
b. PROJECT AND TASK NO. 4641-02 IP No. 124c. DOD ELEMENT 62405454 3b. OTHERREPORT NoS)(AnyothernumbersthatmaybeSosignedthis Iae AFCRL 0080
d. DOD SUBELEMENT 674641 G7

10. AVAILABILITY/LIMITATION NOTICES -

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES . 12. SPONSORING MILITARY ACTIVITY

: Reprinted from Hq AFCRL, OAR (CRB)
Proceedings Fall Joint Computer : :United States Air Force
Conference, Vol.29, pp.37-49, Bedford, Massachusetts 01730
7-10 November 1966 :

13. ABSTRACT

In view of the recent widespread interest in computer systems capable of pro-
viding on-line access to a large number of users, the development of system
software to facilitate such interaction has become increasingly important. This
paper makes what is apparently the first attempt to survey past and present work
in one such area of particular importance for effective computer utilization, the
development of facilities to aid the on-line user in debugging his programs. Various
aspects of the appearance to the user of such debugging systems, as well as of their
implementation, are discussed. Both assembly-language and higher-level-language
debugging techniques are examined, and annotated examples of debugging sessions
are included to impart a feeling for the capabilities of current systems.

Db, tors, Ws
__Unclassified
Security Classification

ew Slnclagsified
Security Classification

14. LINK A LINK B LINK C
KEY WORDS mime

Program Debugging
Man-machine interaction
On-line systems

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LIMITATION NOTICES: Enter any limi-
of the contractor, subcontractor, grantee, Department of tations on further dissemination of the report, other than those
Defense activity or other organization (corporate author) imposed by security classification, using standard statements
issuing the report. such as:
24. REPORT SECURITY CLASSIFICATION: Enter the over- (1) *‘Qualified requesters may obtain copies of this
all security classification of the report. Indicate whether report from DOC.”

Restricted Data’ is included. Marking is to be in accord- (2) “Foreign announcement and dissemination of this
ance with appropriate security regulations. report by DDC is not authorized.”
2b. GROUP: Automatic doungiading is specified in DoD (3) ““U. S. Government agencies may obtain copies ofDirective 5200.10 and Armed Forces Industrial Manual. this report directly from DDC. Other eal ied bDC
Enter the group number. Also, when applicable, show that users shall request through
optional markings have been used for Group 3 and Group 4
as authorized. (4) SU. 8 miliva : Lioin cbpiesortbis
3. REPORT TITLE: Enter the complete report title in all En ey wots is
capital letters. Titles in all cases should be unclassified. shall request through
If a meaningful title cannot be selected without classifica-.
tion, show title classification in all capitals in parenthesis So er
immediately following the title. (5) ‘*All distribution of this report is controlled. Quali-
4. DESCRIPTIVE NOTES: If appropriate, enter the type of fied DDC users shall request through
report, €.g., interim, progress, Sigmar, annual, or final. } 2”
Dive iin inclusive dates when a specific reporting period is If the report has been furnished to the Office of Technical

. Services, Department of Commerce, for sale to the public, indi-

5. AUF HOR(GS): hier Ihe romels) af author(s) 4s Shown on cate this fact and enter the price, if known.or in the report. Enter last name, first name, middle initial. 5
If Me rank and branch of service. The name of 1. SUPPLEMENTARY NOTES: Use for additional explana-
the principal author is anabsolute minimum requirement. Ory notes.
6. REPORT DATE: Enter the date of the report as day, 32 SPONSORING MATARY ACRIVITY: Enter the name of
month, year, or month, year. If more than one date appears the depaitmenta) project ollice of Abioraiory sponsoring (pay-
on the report, use date of publication. ing for) the research and development. Include address.
7a. TOTAL NUMBER OF PAGES: The total page count 13. ApsTRACT) Enter an Shstnas gfving a brief and factual
should follow normal pagination procedures, i.e., enter the summary of the document indicative ol the roport, even
number of pages containing information; hough it may Jeo Spanssiiowases in he body of the tech-= nical report. additional space is required. a continuation
7b. NUMBER OF REFERENCES: Enter the total number of sheet shall be attached. F
references cited in the report. It is highly desirable that the abstract of classified re-
8a. CONTRACT OR GRANT NUMBER: If Sppiprigie, enter ports be unclassified. Each paragraph of the abstract shall
the applicable number of the contract or grant under which end with an indication of the military security classification
the report was written. of the information in the paragraph, represented as (TS), (S),
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate (C), or (U).
military department identification, such as project number, There is no limitation on the length of the abstract. How-
subproject number, system numbers, task number, etc. ever, the suggested length is from 1% to 225 words.
94. ORIGINATOR’S REPORT NUMBER(S): Enter the offi- 14. KEY WORDS: Key words are technically meaningful terms
cial report number by which the document will be identified or short phrases that characterize a report and may be used as
and controlled by the originating activity. This number must index entries for cataloging the report. Key words must be
be unique to this report. selected so that no security classification is required. Identi-
9b. OTHER REPORT NUMBER(S): If the report has been Fiore, such gs equipment mode! designation, trade npn, milk
assigned any other report numbers (either by the originator fory Pr Coos Ro fuegrarhie ocat ion, may be used as
IC the: sponsar), alae enter this amberle). ey words but will be followed by an indication of technical

SORIA, The assignment of links. rules. and weights is
optional.

Unclassified
Security Classification

MULTICS SYSTEM PROGRAMMERS' MANUAL Section BX.10.00 PAGE 1

Published: 6/7/66

ldentification

Interactive debugging aids
D. B. Wagner

Purpose

The need for an "arsenal of new exterminators" for the
"bups' which have plagued programmers since the earliest
days of computing has been thoroughly discussed elsewhere
(e.,. see RB0021), The collection of programs described here
{nrohe, tracer, hreabar, ahd’ monitor, B%.30.01-8X.30.04)
form an interactive debugging ald which gathers into a very
general framework most of the ldeas .in debugging which have
been floating around in separate programs In different
systems. ' This debugging aid Is intended for interactive use
but will certainly be usable by the batch-oriented user
(simply read "control card" for "request" throughout).

A great deal of flexibility is provided through the use of
the macro facility {described in BX.1.01) of the command
language. One very important feature of this macro facility
is that within a macro definition a mixture of commands
(1ines acted dpon by the Shell) and requests (this is the
most common word for lines acted upon by Individual
interactive programs) is possible. Users will not normally
communicate directly with the debugging programs but use
mac ros defined In terms of the "“hare-bones" requests
described in this and the following sections, A collection
of “system macros" will be defined, documented, and made
available so that the user will not have to know about the
full generality of the debugging language unless he wishes
to define macros himself.

Motice

A number of points in this and the following four Sections
(BX.10.00-BX.10,04) are intentionally vague because at this
writing certain parts of the System are not completely
“nailed down." This is particularly true of the macro
facility. Intentionally vague points are marked with “»" |p
the margin.

Debugeing Facilities

interrogation: At an interruption or normal termination of
a program, the user may interrogate the values of variables
and the contents of machine locations; a rather complete
expression language makes Jt possible to conduct these
interrogations in terms of the source language of the
program. For example {if a user, noting some peculiar
program output, hits the quit button while a PL/I| program is

MULT ICS SYSTEM=PROGRAMMERS' MANUAL SCction BX.10,00 PAGE 2

running and types the command

probe

followed by the request to probe,

print a+b

he means that probe is to find the storage assigned to the
variables a and b in the program, add thelr values together
in the same manner as a compiled PL/I program, and print the
result on the console,

Areakpoints: A user may specify that program execution is to
be interrupted upon the occurrence of certain {more or less
hardware=-oriented) events such as control reaching a certain
point or a certain amount of time being used up. For
example a standard macro named trap could be defined which
makes arrangements so that the program will be interrupted
when control reaches.a certaln point (label) in the program.
(This example Is enlarged upon in section BX.10.03) A user
would then type .

trap sym

to cause execution to he interrupted when control reached
the statement labelled sym in his program. Then the user
would start up his program (probably with a call through the
Shell) and wait for the break to occur. When and If it did
occur (i.e. when and If control reached sym), he would
perhaps type print requests and snoop around in the values
of variables at this point in the program's execution
exactly as if he had just hit the quit button as discussed
above. Finally he might allow execution to be continued, by
typing

proceed
or cause execution to be resumed at some other point, by
typing

transfer sym2

where sym2 is a statement label in the source program.

Tracing: Breakpoints may he used in another way. The tracer
Command may be used to store up commands to be executed at
specific breakpoints so that what takes place at the break
is automatic. A macro named mvar might be defined which
Causes the value of a variable to be printed every 10
milliseconds. (This macro would contain the ‘command
breaker, several requests to breaker, the' command tracer,
and again several requests. See the .enlargement of this
example in BX.10.03.) The user could then type,

ovr PROGRAMMERS' MANUAL Sectlon BX.10,00 PAGE 3

mvar a+b

_.,r his program by a call through the Shell, and receive
che output

a+b 2.205
a+b 2.123
a+b 2.145
a+b 3.342

interspersed of course with any output his program produces.

Process History: One of the actions which can be specified
to be performed at breakpoints 1s that of saving the state
of a process so that it can be restored later. One may for
example specify that the process state ls to be saved every
10 ms. Then for example when and if something goes wrong
in the program, prohe requests can be used to hack
conditions up in time so that the user can search .through
time for clues to what went wrong in the program.

limitations

The debugger is designed to be most convenient to users of
PL/! and the standard assembly language. Users of algebraic
languages other than PL/I!, such as FORTRAN IV, will have to
learn some new and occasionally confusing conventions, or
else supply a replacement for the expression=-evaluating
machinery used by the .debugging programs. Users of the
languages sometimes unkindly called "oddball," such as
COMMIT, LISP, DYNAMD, ‘ELIZA, and thelr 11k, will find the
debugger as presently conceived less useful, although the
trace and hreakpoint facilities will probably see some use
in connection with these languages. . It seems unwise to
bulld In any aids to. users of specific special-purpose
languages at this time ‘since only an active user of LISP,
for example, can have any clear idea of what facilities: are
useful in debugging LISP programs,

The Programs
Probe (described in BX.10.01) allows the user to examine and
modify machine conditions and the contents of his segments
using both machine- and PL/l-oriented formats. This is the
core of any debugging aid. Consltderable experience has been
acquired in the matter of machine-oriented formats (e.g., In
DOT, FAPDBG, FAPBUG, and GEBUG), but higher-language
oriented formats are still in a rather primitive state.

Tracer (described in BX.10,02) provides a convenient tracing
facility. In order to use jt, the user Inserts at strategic
points in a program calls to a certain entry In the tracer
command. Various ways of making these calls occur
automatically at specific events will be available, a.z. the

_.rg1-PROGRAMMERS' MANUAL Section BX.10.00 PAGE 4

. and monitor commands and possibly a debug mode In
~aoiler. The tracer comhand accepts requests which

cify "When argument 1 of the ‘trace .call 1s thus, do
Lis." ("This" may be any sequence of commands and requests
ro commands.)

The hreaker command (described in BX.10.03) accepts requests
from a console or macro expansion to place a variety of
event breakpoints into a program. It makes arrangements
with the System to gain control whenever specified events
occur. DRreaker amounts to one way of causing trace calls to
sccur automatically.

The monitor command (described in BX.10.04) accepts requests
from a console or macro expansion which Indicate that
certain blocks of. machine: code are to be executed
Interpretively instead of being allowad to run free.
Whenever an "execution" access is made to such a block ofcode, a trap occurs and. an. interpreter.iscalled.Theinterpreter calls the trace entry with appropriate arguments
after the execution of each machine instruction.

The Debugging Language

An interactive program is an linterpreter Tor a kind of
computer language=-=-an "interaction language" rather than a
"orogramming language." The "debugging language" described
here uses a number of the conventions of PL/I, e.g., the
form of expressions and the control functions If, else, do,
and end.

A request is a line which is read and acted upon by one of
the programs probe, fracer, breaker, and monitor. (A better
word might be primitive, since the requests which ‘are
actually seen by the programs will only rarely be typed by
the user at his console. As was mentioned earlier, they
will normally be used only In macro expansions.) A. request
consists in general of the request name followed by
arguments delimited by blanks. The conventions of the Basic
Command Syntax (see BX.1,00) are , followed wherever
applicable, especially with respect to the '"Shell escape
character" and the semicolon convention.

Fxpressions

An expression 1s something like "a+b" or VYsinla)+6" which
can bé evaluated to vield a value. Expressions are used in
the debugging language In references to variables In the
user's program and also wherever numbers, strings, etc. are
arguments to requests (as in the specification of loops, see
do request, below), Symbols used.in these expressions are
normally identifiers from the source program associated with
the object program under examination. = It Is absolutely
necessary that assemblers and compilers make available to

05 SYSTEM=PROGRAMMERS' MANUAL Sectlon BX.,10,00 PAGE 5 ¥

na deburger the detalls of ‘each compilation: thls: has
-raditionally been done with the "symbol table file," a list
of the ldentifiers defined by the programmer In the source
program and an indication of "what was done" in implementing
that identifier. (The standard format for these symbol
tables is described in BD.2.,)

A quick description of the debugging expression language
would be that It is the PL/! expression language with the
values of expressions limited to scalars (a PL/l expression
may have a vector or structure value) but with the addition
of the data type '"address.'" (The data type "address" may
turn out to be identical in implementation to the PL/! data
type "pointer", but it seems worthwhile to keep the two
concepts separate.) Expressions are divided into two
classes, ''machine-orlented expressions" and "algebraic
expressions." The difference hangs primarily upon whether
the "value" of a symbol referred to in the expression is
taken to be the address (if any) associated with the symbol
or the contents of: the 'storare rerjon (sgain, If any)
associated with the symbol. The values of machine=-oriented
expressions are not constrained to ‘be addresses, since a
"eontants! function is part of the Yanguage. This function
takes an address and returns its contents In the form of a
36-bit bit-string which may then be used in any of the usual
ways that bit=-strings are used in PL/I! expressions.

An algebraic expression is any valid. PL/| scalar expression
in which the variables referred to come from programs
written in algebraic languages such as PL/! or FORTRAN Iv.
The value of a variable Is taken to be the contents of the
associated storage at the.time expression evaluation takes
place. If the variable Is Internal to a (PL/I!) block which
is not now active, the expression-evaluating machinery
attempts to find its value at the last exit from the block,
This information may or may not currently exist, depending
for instance on the declaration of the variable (e.g. static
or automatic) and the strategy used for dynamic storage
allocation, The debugger attempts to find a symbol in any
of the symbol tables It “knows about," A number of
ambiguities present themselves: A name may be used for
variables in different separately compiled programs or In
different blocks of the same program, and one variable may
have more than one generation active (e.g. when a recursive
procedure calls itself), Toiprovide a notation for “thls
symbol in this block," the question-mark (?) is used. For
example "a?h" refers to the variable b In the block a. Eile
or segment names may be used in the same way as block names.
If a block has no name, its number (counted linearly through
the source program) Is used Instead, so that Y"aZ?2c?37bh"
refers to the variable b In the third block internal to the
block ¢ Internal to the block a. In the case of a "multiply
active! variable (one for which more than one generation
exists), the latest generation (representing the deepest

LLTICS SYSTEM=PROGRAMMERS' MANUAL Section BX.,10,00 PAGF ©

recursion) will arbitrarily be used,

A machine-oriented expression is an expression in which the
"variables" are symbols from assembled source programs.
Here symbols represent either addresses, base=offsets (such
as stack symbols), or Integers (symbols defined with some
analog of the SET pseudo~operation in FAP), Expression
syntax remains that of BlL/1, ln order to allow the
expression of complicated Boolean conditions, such as those
nceded In the specification of searches for machine words
with certain content or effective address, several special
built-in functions are provided: the "content" function ¢,
the "effective address" function ea, and the Boolean
function safe which tells whether it is "safe" to use the
effective-address function. This last Is made necessary by
the fact that in the 645 there are numerous funny kinds of
indirection that do not yield proper addresses. The
"contents of register" function cr recognizes mnemonics for
special registers, .so that for example “cr(a)" refers to the
contents of the accumulator as a 36-bit string.

The treatment. of . the dollar=-sign ($$) in debugging
expressions is slightly different from its treatment In
PL/1, it is an operator whose preceding operand Is a
segment name, segment number, or base-register name and
whose following operand is an integer giving relative
address. The result is of course an address, Thus
"alpha$7" means location 7 in the segment named alpha, but
"6$7" means location 7 In segment number 6..

"Mixed" expressions, those which Include both algebraic
identifiers and machine-oriented identifiers, most
emphatically do not have an official interpretation. These
probably will not cause ani error condition but will be
interpreted In some reasonably intelligent manner, and may
be useful in some contexts; nothing more will be said about
these here.

The Control Requests

The four parts of the debugger will recognize, through a
common interface, the control requests Jf, else, do, and
end. The request

if condition then reguest

causes the request to be performed .if and only If the
conditional expression evaluates true. Then

else request

causes the specified request to be performed If and only If
the conditional expression in the last balanced If request
evaluated false. The request

LTICS SYSTEM=PROGRAMMERS' MANUAL § ction BX .10.00 PAGE 7

do (same options as In PL/I!)

causes requests following, up to a balanced

end

to be executed under control of the options specified
(options are loop=-control specifications as In "do j=1 by 1
while a=b;").

In a da specification such las "do J=,..% the variable
specified is a "pseudo=variable" which Is to be speclally
set up for the purpose. The ‘variable 1s assigned 3
data=-type consistent with that of the ‘value of the
expression to which it Is being set, storage is assigned,
and the variable name is placed In the symbol table. When
the range of the do is left, the storage Is freed and the
name removed from the symhol table.

In addition to the above requests, each of the four parts of
the debugger recognizes the request

exit

which means to return to. the calling program, normally t
Shell.

a.

"he

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BX,10.00A PAGE 1

Published: 04/08/69
(Supersedes: BX,.10,00A, 01/06/698X.10.00A, 07/18/68)

Identification
Interactive Debugging Aids for Initial Multics
M. Wantman

Discussion
MSPM section BX,10,00 describes an elaborate system of
debugging aids for Multics. While that section describes
the system envisioned for the ultimate versions of Multics,
it was thought desirable to. have a simplified debugging
system which could be used with Initial Multics. This
interim version is expandable and eventually should include
all the features described in BX,10,00.

Facilities
The interim debugging system provides ways for a user
to obtain the following types of information:

a) machine conditions and register contents

b) segment names and numbers and access information

c) selective dumps in octal of a segment between
user-specified limits,

d) dump contents of an entire process directory

e) forward or backward stack traces

f) argument lists,

g) list of available requests

In addition, the user may make changes which affect the
subsequent execution of the process. These are

h) make a segment known or unknown to the process

1) make an octal patch to a segment

No provision has been made for symbolic addressing of |
locations within segments, or for changing the contents
of registers or segment locations, These, as well as
other features described in BX,.10.00, will be implemented
in stages, and BX.10,00A will be updated periodically,

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX.10.00A PAGE 2

Usage
Entry to the debugging system Is accomplished through
the procedure "probe". Requests for specific information
are then given to "probe", which passes them on to the
appropriate procedures. 'probe" is invoked in one of
two ways:

1) from command level, This can be done after
a process incurs an unexpected signal and "unclaimed_signal"
has called the listener, It can also be done after the
user quits a process that has been running and the quit
responder is invoked,

2) from a running process. This occurs If a call to probe
is encountered in a procedure segment, Once the call to probe
has been executed, the user can ''snoop' around at his leisure,
Execution of the original procedure can be continued by simply
leaving probe via the Haqult" request,

Once probe has been entered, It handles all user input
lines until the "quit" request is given,

The following requests are recognized:

arglist print argument list for ane stack frame

dump_process print entire contents of a process directory

info print a list of requests available

initiate make a segment known to the process

output change routing of output

quit leave probe

segdump dump segment in octal

seginfo list segment status information

set place information in write-permit segment

stack print stack trace

state obtain machine conditions

terminate make a segment unknown

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX,10.00A PAGE 3

arglist
The format of this request is

arglist s1 s2

It prints the values of arguments which were passed to
the stack frame designated by s2 in the segment st, s1
is the name or number of the stack segment, and s2 is
either the location in octal of the beginning of the stack
frame, or the name of a segment. If it is a segment name,
the stack is searched backwards for the latest occurrence
of a frame used by the segment. If no appropriate frame
is found, a diagnostic message is printed.

If only one argument is given to arglist, the argument is
interpreted as a location within the current stack segment.
That is,

arglist seg_name
is interpreted as

arglist stack_xx seg_name

dump process

Request format is

dump_process -

where id is the unique id of the process expressed in
octal or as a character string, 1f it is nob present,
the user”’s process 1s assumed. The process directory
is scanned and each segment is dumped in octal. Normally
output will be directed to a segment for later printing,

info

Execution of this request will cause printing of a short
description of the requests accepted by probe, The message
will refer the user to this document for more complete
information.

initiate

Makes a segment known to the process and assigns a segment
number. The format of the request is

initiate path =-callname-

id

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.10.00A PAGE 4

The segment found at path in the file system is initiated
with call name callname., If callname is not specified,
the entry name of the segment will be used. If the segment
is successfully made known or is already known, the comment

segment (path) initiated with call name (callname). Number (n)

is printed. If it could not be initiated, the comment

segment (path) not initiated

is printed..

output
A11 output from probe is directed initially to the user’s
console, It may be desired to have output go to a segment
and have the segment printed off-line, The request

output segment s

will direct output to the segment s. If no segment by
that name exists, one will be created with access RWA,
The comment

output directed to segment s. Number (n)

will be printed on the console, If the segment is filled to the
6uK limit, its bit count is set and another uniquely-named
segment is started.

Output will be redirected back to the console by the request

output console

The segment that was being written will have its bit count
set. If output is directed to the segment again, the
later information will be appended to the end of the segment.

quit
When this request is given probe returns to command level,
1f output had been directed to a segment, the bit count
on the branch is set.

seadump
This request is used to dump all or part of a segment
in octal. The segment must be known to the process, and
may be specified by name or number. The format of the
request is

segdump s =lbound- =-hbound-

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX.10,00A PAGE 5

s is the name or number of the segment to be dumped, and
the lower and upper bounds are given by lbound and hbound
respectively, If the lower and upper bounds are not specified,
the entire segment is dumped. If the upper bound is not
specified the segment is dumped from nl to the current
length as defined by the file system,

If the segment is not known to the process, the comment

segment s not yet initiated

is printed, The segment may be made known by the initiate
request, If the user does not have read access, the information
is copied via ring~O-peek into the users stack and printed,

seginfo
This request prints a list of names and numbers of segments
known to the process, The format is

seginfo st! s2 -all- -long-

s1 and s2 are segment names or numbers in octal, and indicate
the range of segment numbers for which the information
should be printed, For example, the request

seginfo 200 test_proc
will print the names and numbers of all segments whose
numbers lie between 200 and the segment number of test_proc.
If neither s1 nor s2 is specified, the information is
printed for all segments, If only si is specified, the
information is printed for s1 only, If the lower bound
is higher than the upper bound, a comment is printed,

The presence of the optional parameter "ati! in the request
will cause all the call names by which a segment Is known
to be printed, The presence of the parameter Vong will
cause printing of the current length of each segment,
its access attributes, and its date of creation,

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BX.10.00A PAGE 6

set

This request allows the user to make changes to any segment
in his process for which he has write permission. The format
of the request is

sel Sin vl ~v2= =y3= __,

S is the name or number of the segment to be altered, and n
is the location where the first new value is to go. Blanks
may or may not be present on either side of the vertical bar
The status of segment s is examined to determine if the user
has write access, If he does not, a message is printed and
no patching is attempted.

Otherwise the values represented by vi(v2 v3 ...) are placed
in locations n(n+1,n+2,...) of segment s. A message is printed
containing both the old and new values to minimize the probability
of error and to facilitate restoration of the original
values,

s tack

Multics keeps a partial history of the course taken by
a process, The "stack" request makes some of that
information available. It prints the name and number
of the procedure using the frame, the starting location
of the frame, and its size. The format of the request
is oo

stack -s1- -s2~ ~f- -args-

where all parameters are optional.

s1 is the stack segment to be examined, s2 is the location
in the stack where tracing is to begin, "f' indicates
that the trace is to proceed forward in the stack, and
"args" asks for an argument list (as in the "arglist"
request) to be printed for each stack frame.

s1 may be specified by name or number, If it is not given,
the current stack segment is traced from the end to the
beginning. s2 may be specified only if s1 is given.
If s2 is given as an octal number, it is interpreted as
the starting location of a stack frame. If s2 is the
name of a segment, the stack is examined from the end
for a frame belonging to s2. If one is found, tracing
begins at the frame. If none is found, a message is
printed for the user,

MULTICS SYSTEM~-PROGRAMMERS® MANUAL SECTION BX.10,00A PAGE 7

The forward option "f' can be specified only if s1 and
s2 are given, If it is present, the lrace proceeds from
s? to the current end of the stack, The option "args"
can occur anywhere in the request, If it is present,
Wetack! will print a list of all arguments passed to each
stack frame,

state
The "state" request prints machine conditions as requested by
the user. It searches backward through the current stack
trying to find an. occurrence of a frame glenn to. Ysignal’,
1f one is found, and it is preceded immediately by an
occurrence of the FIM (fault interrupt module), then the
FIM frame contains the machine condtions at the instant
the fault occurred,

If state receives a number as an argument, it prints the
machine conditions existing at that location in the current
stack segment, If no signal-FIM combination can be found,
register contents are extracted from the stack frame of
the procedure that called probe.

The following parameters are recognized by state:

arith print A, 9, and exponent registers

timer print timer register

location print location of fault and the
effective address

index print 8 index registers

bases print 8 base registers

cunit print control unit and ring number

If no parameters are given, all the above information is printed,

terminate
This request makes a segment unknown by removing it from
the KST (known segment table) . The format is

terminate si

$1 is the pathname of the segment to be terminated. 17
no directory is specified the current working directory
is assumed, =

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BX.10,00A PAGE 8

(Note: When a segment is made unknown, its linkage section
is not removed from the combined a section, Ifa different version of the segment Is later made known,
you will continue to work with the older linkage section,
This can lead to unpredictable results),

Summary of requests

arglist -S1= s2

dump_process id

info

initiate path =callname~

output medium -name-

quit
segdump s1 =1bound=- =-hbound-

seginfo -5l= =s2- =all=- -long-

set stn vl =v2= =v3=-

stack -stackseg~ =sl- =f- -args-

state -loc=

terminate callname

Implementation
Entry to the set of debugging commands is achieved by
calling the procedure probe with no arguments, Probe
then calls dispatch_request with no arguments for each
new request line, After completion of each request probe
prints the line,

to indicate that the user sheuld enter his next request,

MULTICS SYSTEM~PROGRAMMERS © MANUAL SECTION BX.,10,00A PAGE 9

The procedure dispatch_request calls read_in to get the
request line and hands it to the debugging parser via
the parse_scan$prime entry, It then calls parse_scan$atom
to get the first group of characters, This should be
the name of one of the basic requests, A table of request
names and corresponding procedures to call is kept In
the eplbsa segment debug _data. Dispatch_request searches
this table and calls debug_data with the index to the
request table, which makes the call to the appropriate
procedure,
Each request makes calls to parse_scan to get its arguments
and interprets them appropriately. ‘If a request finds
that it cannot do what is asked of it, it prints an error
comment and returns to dispatch_request which returns
to probe which waits for the next request,

If the search made by dispatch_request fails, the request
is passed directly to the shell, which treats it as a
normal command line. Thus any Multics command can be
given without leaving probe,
For details of the implementation of the individual requests,
see MSPM sections BX,.10,05-BX.10,20, For abstracts, see
MSPM section BS.

MULTICS SYSTEM~PROGRAMMERS! MANUAL Section °X.10,01 PAGE 1

Publ ished: 6/7/66
jdentification

Machine= and PL/l=oriented interrocation and modification of
the contents of segments
Probe
De BJ V3 onér

Purnose

Probe is an interactive program which allows the user to
peek Into and modify the segments of a. process at any
Iinterruntion of the process or after a normal termination.
It reads its requests through a common interface as
mentioned In RBX,10,00, so that for example the df and An
Requests facilitate the definition of macros which perform
various kinds of searches.

lJsagre

The command

probe

causes probe to begin reading requests from the console.
The user may type any of the requests listed below or any of
the “control¥ requests (if, alse, do, and and) Hdescribad in
£EX.10,00, Ye may also type macro invocations (in the same
Form as in the command language: see 8%X.1.01) which expand
to sequences of these requests, If a lime received by nrohe
(after macro expansion) is not recognizable as a request, it
is treated as a command, The line is given to the Shell,
which gives an appropriate dlagnostic if it is not a command
either.

Interrogation Requests

One request, backed up by numerous special functions built
into the expression-evaluating machinery, provides the basic
interroration facility. This is

print expression exnrassion ,..

The values of - the expressions are printed on one line on the
console, separated by tab characters, Fach expression is
normally an invocation of one of ithe built-in "format
functions,” ‘A format function takes soma argument and
roturns 3 character~string which “represents” tha valua of
that argument according to some interpretation. {See the
example below.)

The format functions are listed helow., Operation of most is
obvious, Fach takes a PL/! scalar or an address and returns

_ cTEN PROGRAMMERS MANUAL Section BX.10.01 PARE 2

eter string which is suitable as a ranresentation of
.1ue of the scalar according to some interpretation.

dec imal
floating
nctal
binary
ascii
instruction
indirect
symbaddr

Fost of these are from REBUG, and hehave In assentially the
same way as the corresponding RFBUA output formats, The
instruction format function takes an address and produces a
representation of the contents of that address which looksjike a line from an assembly,|il.a.,somethinglike"dasym, 4". If a symbol table isi avallabla for the segment
involved the address Js printed symbolically. i (One of the
jessons of FAPDBEG and OFBIG is (that this sort of symbolic
instruction printing Involves a.srast number of. ‘sesthetic
problems which can be only partially solved. A number of
known bugs exist in FAPDBA and BERUAR, such as the one which
causas printing of VALS 11M ac. VALS SYMBOL-B763Y but
usefuiness is only slightly impaired by such nonsense,)
indirect asain takes an address and Interprets its contents
as an indirect word. An ontional second argument specifies
tha type of indirect modifier the Instruction referring to
the Indirect word would have {e.x, », SC, £1, etc,~=modifiar
mnemonics from the assembler), Symbaddr takes an address
and produces a representation of the address. in the form
"segnamSexpression', where the expression is In terms of
whatever symbol tables may be available for the segment,

A macro (defined to perform the same operation as the 'GEBRUS
“neo! praquast), Invoked to nrint the contents of locations
63 through 105 of segment aipha interpreated as decimal and
octal, might produce the following sequence of requests:

do q=alphas$bq by 1 to alphaslls
print symbaddr{aq) deciimal{(c(q)) octal(c(qg))
end

A MoaarchY macro invoked to search the same arasa for a: word
with bit 29 on might expand to the following:

do a=alpha$Bd by 1 to alphas$lls
if substriclaq),20+1,1)="1Yh thon print -symhadrdriaq)
end

gy lodlification Pequnsts
Yiu?

« sYSTEM=PROGRAMMERS' MAMUAL Section RX.10.01 PAGE 3

ear. may wish to aller the contents of his sagmants at an
 ierruption of the execution of a program for either of two

nasons:i: he may Wish to correct a bug without retransiating(despite the fact that "patching" wil) be less desirabla.innultics than it has been in other systems), or he may ba
trying to answer such a question as "What would he the
effact ive address of this if lindex register 2 contained
that? or "“Hould this complicated PL/I conditional
expression evaluate true if alpha were 25,72?"

To allow hoth of these uses, with emphasis on the second,
the requests set, reset, revart, and fix are provided, The
request

set variable=expression

Savas the current valus of the! variable In. a stack and
alters the valuas to that of theiaxprassion. "Tha yvalua of
the variable! means, for a symbol used in an .assembly, the
address it represents (the value of the expression rust be
an address), and for an algebraic variable the contents of
the storage region associated with the variable, To patch
machine locations, the format

set c(address)=axpression

4 is used, meaning set the contents of the Yecation,

A patch normally remains in force only until nrobs is left,
ejther by a normal return {axltirequest) or: Hy ‘a .transfarinto the program (transfer or nrocead request),«atwhichpoint the saved value Is restored. The following requests
modify the application of this rule:

Fix variable
fix clarddress)
reset variable
rasaet claddrnss)
revert variable
revert c(address)

Fix makes the patch permanant, so that there will: ba no
automatic rasetting of tha valued, DRaset changes the valus
of the symhol or the contents of the location specified back
to its value the last time prohs was entarad (tha value atthe bottom of the stack).:Davartchansas=ittotheinextprevious value saved by the gal irequast (the value at the
top of the previous~values stack).

Hondline the Traore Elle

A trace fila may be used to keep a history of a process,
This is a ring file of size determined either by default or
by specific declaration into which the snan raquest

cySTEM=PROGRAMMERS MAMUAL Section 8%.10.01 PAGE 4

-ribad below stores snapshots of interesting storage
onions. Then the forward and hackward requests allow the

yser to roll machine conditions! back and forth in time
(joosely speaking! sec the discussion below) so that the
full power of probe may he used to peek at conditions at
varjous times in the history of the process. The trace fila
will also see considerable use in conjunction with a “time
control” attached to displays analogous to the Scheduling
Algorithm Display in CTSS and for statistics~gathering.

Mormally the following request will be used only through the
tracer command,

SNaAn ragion, recion, ...

Fach remion specification takes elther of the forms

variable
address to address

where the symbol is ‘an algebraic .variable and the
eXpressions are addresses. This request causes a snapshot
of the specified storage ragion to be placed Into the trace
file. The request

snapall

takes a snapshot of every impure {changeable) sesgmant
attached to the process, (Or rather, a snapshot of eanough
information so that the state of tha process can hae brought
hack to this instant In its ‘history. Clearly. thera are
problems concerning-the parts of the process which are
inaccessible to the user.) The amount of information stored
can easily become rather gross and this request must be used
with sore care. The ‘usefulness of this sort of
all-inclusive snapshot, howaver, is clear: It makes
possible a Ytime-machine' which allows the user to jump
frealy ahout in history and to experiment with changes In
the properties of the primordial ooze from which a sat of
mach ine conditions sprang. The reauests

forward
backward

roll machine conditions forward or: backward ln. the trace
file, That is, thay rend the next ‘and previous snanshot
respactively. anf sont {sea above) the contents of the
corresponding storage regions accordingly, itis to De
noted that thls can lead to an inconsistent nuddle Jf not
enough information is. saved in the trace file, e.z. if snap
requests are used to do the saving instead of snapall. The

8 trace file is a tool whose use is not always appropriate,

»5 SYSTEM-PROGRAMMERS' MANUAL SCction BX.10.01 PAGE 5

, "time=-search" macro, invoked to find an ‘instant in‘ tha
history of the process when the variables a‘and b in some
PL./4 program were aqual, might i1expand ‘to the followingsequence of requests (note that "un" is the escape'forthenegation sign):

do while aln=h
backward
end

Miscellaneous Pequests

The request

proceed

causes program execution to be resumed at the point at which
it was last interrupted, either by a quit or by a breakpoint
or other call to the trace antry (sme 2Y,10.02-03), This
involves a "synthetic epilogue,” described in detail in EPL
design journal #4 (B0005), which deactivates active blocks
of the debugging programs which are above the program in the
stack, as in a PL/I "non-local po to,"

The request

transfer address

performs a synthetic epilogue and transfers control to tha
location specified,

The request

causes probe to return to its caller, normally the Shell,

exit

MULT ICS SYSTEM=PROARAMMERS' MANUAL Section BX.10,02 PAGE 1

Publ ished: 6/7/66

j dont ification

Program tracing under interactive control
tracer
D. B. Wagner

Purpose

Use of tracer allows tha execution of a "program to be
monitored on-line in as fine or coarse a manner as desired.

saga

To use Lracar the user inserts at strategic points In his
nrograrn calls {using the standard call sequence) to the
entry tracerSreport in the tracer command. Some ways of
causing these calls to occur automatically on occurrence of
certain events will be provided, such as the breaker and
monizor commands ‘described Jn B8%.10,03 and B8X.10.04, There
may also be a debus mode in the PL/! compiler which causes
such calls to be inserted hetween statements, giving ful)
information concerning variables changed, previous and new
values, etc, The tracer command is then used to store up
actions to be performed whenever tracer$report (is called
with certain arguments. These actions may include both
commands and requests to commands.

The format of the calls to tracerSreport is essentially up
to the user, except that the filpst argument must be a
character=-string name for the call which will be used to
identify the actions to be performed.

The command

tracer

causes tracer to begin reading requests from the console.
The user may type any of the requests listed below or any of
the "control! reaquests (if, else, do, and) described in
NX.10.00, He may 31so type macro invocations (in the same
form as In the command language: see BX. 1.01) which expand
to sequences of these requests, if a line received by
tracer (after macro expansion) is not recognizable as a
request, It Is treated as a command. The line is given to
the Shell, which gives an appropriate diagnostic {if it is
not a command either.

Implementation
The following digression Is necessary to explain the action
of the tracer command, See the diagram of Fig. 1. The
command listener, the debugging programs, and . most other

10S SYSTEM=PROGRAMMERS' MANUAL Section BX,10,02 PAGE 2

coractive programs read their requests through a 'request
.andler'’ which acts as an interface to the 1/0 system. J ¢
.xnands macros, handles the semicolon convention, etc. The
rnquest handier keeps a special data base called the request
sunur, and before the request handler reads a line from the
console it checks to see If there are any lines waiting in
the request queue. If there. are it uses the first line In
the queue Instead. (The macro processor will be one prozram
which places lines Into the request queue: the entire
first-level expansion of a macro invocation Is simply put at
the head of the queue.)

llhen the setaction request described below specifies a name
and a list of commands and requests, these are stored in the
tracer dats basa, When eventually the user's program is
started and ‘a call to tracerSreport occurs, the first
argument of the call is matched against all the stored-up
names. If a match is found the corresponding list .of
command and request lines is placed at the head. of the
request queue and the command listener Is called. This
scheme provides a very general tracing facility.

Requests to Tracer

Setaction and endaction are the basic | requests:
sequence

setaction pame

. action

endaction

causes the ‘action specified to be stored away in a data base
used by the trace entry, The name is a charscter-string
identifier, to be matched against the first argument of each
trace call. Action is a sequence of commands and requests.
it is stored up to be performed whenever a call to the trace
gantry tracer$Sreport has the first argument equal to pane.
If more than one action has been specified by setaction
requests for a given name, they will be performed In the
order given, Name may be "*V, in which case action is to be
performed on every call to tracerd$report.

The action specification may of course include conditional
(If +... then +...) requests which narrow down the selection
of action still further than: the naming .convention does.
Expressions may include the special function

tracearg(n)
which gets the n'th argument of the last trace call.

the

yLTICS SYSTEM=PROGRAMMERS' MAMUAL Section BX.10.02 PAGE 3

The request
resetaction pame

dalatas all actlons stored up for the name given.

The requests
}istaction

listactlion pane

causa. alther all. currently ‘specified actions, ‘or ;all
currently specified actions for the given call name, to be
listed in a convenient format.

The request

causes tracer to return to-lits caller, usually the Shell.

ax it

MULT ICS SYSTEM=-PROGRAMMERS' MANUAL Section BX.10.03 PAGE 1

Identification Published: 6/7/66
Breakpoint processor
hrealar
D. B. Hagner

Purpose

Breaker accepts requests to interrupt the execution of a
program upon the occurrence of certaln events. The tracar
command (see BX,10.02) is normally used to specify actlons
to be performed at each break.

Usage

The command

breaker

causes breaker to begin reading requests from the console.
The user may type any of the requests listed below or any of
the Ycontrol" requests (If, nlse, do, ond) described In
BX.10.,00, He may also type macro invocations (in the same
form as in the command language: see BX.1,01) which expand
to sequences of these requests. fi a Vina received by
breaker (after macro expansion) is not recognizable as a
request, It is treated as a command, The line is given: to
the Shell, which gives an appropriate diagnostic: if it is
not a command either.

Requests to Breaker

The request

setbreak name event

causes arrangements to be made with the System so that when
the specified event (see below) occurs breaker will regain
control and meke a cal) toithe trarar entry tracerSreport,then allow the program. to resume.running.Mareisacharacter=-string expression (see the discussion of
expressions in BX.106.00) which is to be used as the first
(identification) arsumant in thease calls. Event is one of
the following (meanings are Usually clear: detalled
explanations are avoided here to keep this document to a
manageable size)

extime n ms
extime pn sec
extime n min
extime.n hrs

realtime (same arguments as extime)

MULT ICS SYSTEM=-PROGRAMMERS' MANUAL Section BX.10.03 PAGE 2

access Snhoc location to location
access spec variable

(spec a combination of X (execution), PB
(read), W (write))

call from ser
call from segSexpression
call to ser
call to serSexpression
COI VEE POM sas LO lous

return (same arguments as call)

extref (same arguments as call)

Call and return refer to subroutine calls and returns (as in
the C7SS cormand STRAGE), These breaks and the eaxtref
(external reference) break are implemented using special
entries to the Linker similar to those dascribed in 38.12.01
for the 645 simulator system,

The access event break Is implemented by temporarily
changing fhe descriptor bits for the segment involved and
arranging to have access~violations reflected to the
debugger's trap=-handling routines. This method can of
course be rather costly, especially if a small block out. of
8 large sagnent is specified, since all: accesses of the
specified type anywhere in the segment must be executed
interpretively., It is expected that interpretive execution
of Instructions will take an average of 50x normal execution
time.

There Is a problem with the axtime (execution time) event:
within the system saxecution times are maasured in core
cycles, not in conventional time units, Hence in addition
to the time units mentioned above for the extime request
(which have to be approximated in terms of core cycles), the
units ke, ric, and i ze {kilocycles, magacycles, and
gigacycles) are provided.

The request

exit

causes hrealker to return to its caller, normally the Shell.

Examples

A "watch" macro might be'defined to permit the monitoring of
the values of variables through time. '¥Hhen invoked to watch
the variable beta in a PL/! program and report every 10 ms.,
the macro might expand to the following sequence, which. as
can be seen includes both commands and requests:

MULT ICS SYSTEM~PROGRAMMFRS' MANUAL Section BX.10.03 PAGE 3

breaker (command)
setbreak "xyz" extime 10 ms (request)
pxit 1

tracer (command)
setact lion Yxyaz¥ (request)
probe (command to be stored)
print "beta" bats (request to be stored)
proceed
endact ion (request)
exit h

When the program Is’ started up, the following 1) lnes,
Interspersed of course with normal program output, might be
typed on the console:

beta 5,723
beta 3.927
beta 5.400
beta B.723
beta 3.927

and this might or might not give the user a clue to what is
going wrong with his program.

A macro to perform the same function as the "B" request In
FAPDBG (break when control passes to a specified location
and begin reading requests) might expand to:

breaker ". (command)
setbreak "xyz" access X location:

(request)
exit u

tracer (command)
setact ion "xyz" (request)
probe (command to be stored)
print “"BREAKY (request to be stored)
endaction (request)
exit §

When and if control reaches the location specified, the
command probs will be called, It will print YBREAE" and
begin reading requests. When the user eventually types the
proceed request, the program will start running arain.,

MULT ICS SYSTEM=-PROGRAMMERS' MAMUAL Section BY.10.,04 PAGE 1

*Publ ished: 6/7/66

dontification

Instruction=-by=~instruction Interpretive execution
programs.
ponitor
D. B. Yagner

Purpose :

Honitor accepts requests which cause certain areas of
programs, whenever entered, to be executed interpretively
instead of belng allowed to run freely. Used in conjunction
with the tracer command It allows very tight control of the
execution of a program which is causing trouble.

Usage

The command

monitor

causes monitor to begln readlng requests from the console.
The user may type any of the requests listed below or any of
the "control? raquests (Jf, alse, do, and) described In
BX.10,00, He might also tyne macro ‘invocations (in the sane
form as In the command language: see 8%.1.01) which. expand
to sequences of these requests. }f a line received by
monitor (after macro expansion) is not! recosnizable as 3
request, it. ls treated as a command, .The line is .ziven to
the Shell, which gives an appropriate diagnostic ff it is
not a command elther,

Requests to Monitor

The request

setmon location to location

causes arrangements to he made so that 811 execution of
instructions in the block specified Is done under strict
supervision, Vhenaver control reaches a location In a block
spoacifled In a Sefron raquast, an interpreter rains contro)
nf the process (by the sams rmchanicm as that used by the
2CCAesSS event in hrealker) and executes the machine
instructions Interpratively. At avery instruction. a call to
the tracey entry tracer$report (seo BX,10,02) is made with
appropriate argunents, Mame is a chsrocter=strine
gpxpression which is to be used as the first (identification)
argurcent in these calls. it Is expected that Interprative
eXacut jon of nachine Instructions will take roughly 50x
normal execution time,

Of

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section P¥.10.,04 PAGE 2

The request

resetmon nanme

resets any setrmon's which have been given for the specified
name.

The request

causes monitor to return to its caller, normally the Shell.

exlt

PUDP12 WORKING COMMITTEE

Here is a copy of the overrated report of the first meeting

of the working aroup, 1t Is noteworthy for Its omissions, In

particular, the ideas and criticisms of Cary Ellison and Bill Wulf

are poorly represented, and the discussions of the features of the

MAC and BBN systems are wholly Insufficient (we need more specifics

about the BBN system), Hopefully the meeting on 26 January wij |

polish up these difficulties,

I will be In touch on the: exact time of the meeting, but if

you don’t hear, assume 9:30 AM at BBN,

PEACE, Bob Sproul

This rather sketchy document represents some Of the

considerations discussed at the first meeting of the ARPA Users’

Working Group on 19 December 1969, This is highly preliminary, and

will need hgavy revision.

I. Why cooperate at all?

This auestion Is perhaps not as sliily as |t may at first

seem, One of the considerations necessary to specify a time-sharing

system for a community of users Is an adequate characterization of

those users’ habits and their requirements, There are Several

requirements of the ARPA Users (hereafter referred to as the AU's)

which suggest that they might want similar time=sharing Systems at

their installations, First; many of tha users of the DEC 13/52

system fee! that it leaves something to be desired, It. shouid De

remembered that the system was designed and bullt in what are now the

dark ages; and that It has served rather wel|| for the origina}

purposes, However, the AU's research~orjented work often depends on

the versati|lity of the system supporting that work, and much of that

work finds the DEC system somewhat recalcitrant,

Second, the AU’s may benefit from compatible systems at al]

PDP12 instaliations, Programs generated by one outfit can then be

used by all, If the ARPA net becomes a useful thing, these Systems

can enjoy identical ways of servicing network messages, The cost of

implement|ng a new ocompller or a new system feature at all

installations will thus be rather low,

Third, given that the AU's wlll have 10 do some system

development to get any time-sharing system tuned te thejr special

requirements, there is a potentla| saving in manpower and time by

cooperating In the effort, or |nvesting some particular group with

responsiblity for the task,

Il, What possiblities exist?

We envision about three ways of tackling the problem of

providing ourselves a system! (1) modify the DEC system to include

the shiny new features we al| feel we need, (2) adopt and modify the

MAC or BBN systems, and (3) write a new system from scratch,

Our views on the feasibility of these various paths arg

reserved untill after some discussion of the requirements of the

system, This following discussion is rather inutije in that it does

not constitute a concrete specification of a time~-Sharing system that

could be bullt, It Is rather a |ist of prejudices == areas or Ideas

that should be emphasized In the system we would want, It is also a

list of problems, e,g, providing real=time service, The discussion is

merely to suggest that the system designers or modifiers should

tackle these problems, and seek an [mplementat!on consistent with

cther aims of the system,

In short, we did not fee| ourse|ves sufficientiy adept

system=designers to |ist Imperatives, and resorted rather to Wwoozing

around in that beautiful] meadow of |ndecision,

111, Genera| performance goals,

We would like to try to characterize the uSer environment for

this time=sharing system, We expect that most Installations wil]

want to service about 32 users simultaneous|y from as many terminals,

Some instajlations may have a need for batche~| ike processing

abljlities as: well, Of course, the exact guality of this service Is

impossible te specify, It wil] depend heavily upen particular 1/0 and

fille system speeds, as well as the job mix running In the machine,

Several of the existing PDP1# groups (notably Stanford) have

had experience with time-sharing for AU=-||ke users, It Is not easy

to ¢clte many specific recommendations emanating from this experjence,

We can, however, say something about the Job mixes observed, and the

reactions of users to various kinds of service, Stanford finds

typically three kinds of users!

1, The editors, A small! editing program (now 2 K) Is used by

a great oauantity of peopie for long periods of time, The editor

makes use of control characters and special echoing to do intra-|line

editing, It Is thus highly desirable that the editor oe given Service

sufficient to do the speclia| echoing as fast as possible, Users are

vary sensitive to the response time when editing a line, If the

editor must go off and do some complicated string Search or a Jong

file operation, users are very understanding of the delays: since

they reallze a fair amount of computation may be required,

2, The assemblers and compilers, The next portion of the

debug loop requires assembjing and loading your program, These

processes are have several unlgue characteristics: they make heavy

demands on the file system, require essentially no user |nteraction,

and usually can make reasonably good estimates of the amount of core

and compute time required to accomplish ‘the appointed task,

Typically, the assembler or compiler will run In 32 K for a large

program, and consume 15 seconds to 1 minute of compute time,

3, The debuggers, People almost never RUN thelr programs,

but Instead debug them, For examining Iocations |in thelr address

space (which may require searching some symbol] table), the user |ikes

fast response, When he asks that a portion of hls program be

executed, he will tolerate some delay, These jobs are typically

S@=86 K long,

The scheduling system which developed from these requirements

attempts to give a uniform |eve| of service to al! users, Statistics

are kept about the percentage of run time requested that Is actually

granted, These statistics have a time constant of about 20 secs,

Hence, |f a user sudden|y becomes runable because & user interaction

has terminated, he will very often run unti| the process |s blocked

for more Interaction, This is better service than merely putting

jobs emerging from teietype walt In a high priority queue,

BBN ° reports the use of their system to be typically 1p

editors and 12 large LISP users, Clearly, the system they are

building is desliaoned to service a much larger number of Jobs,

IV, Hardware requirements,

We gsuagest that there Ig a minimum hardware configuration

which is sujtable for the time~sharing system we propose. The system

should be able to function adequately In this minimum configuration,

and should also be able to benefit from (certain) augmentations of

that configuration,

First, we assume one (1) PDP1d processor or equivalent (enter

the IC 9923), It shoujd have al| the hardware options (i.e, a 13/5¢

~~ byte instructions, floating point, although not necessarily

protect~relocate),

Second, it seems unreasonable to develop a time=Sharling

system whieh cannot count on at lsasft 128 K gore, This is not an

absolute requirement, but the whole Issue of process switching

revolves around such auestions as amount of core, swapping speed,

latency, etc,

"Third, and more long=winded|y, a memory maP |s required, Some

of the inadeauacies of the DEC system result from the terribly simple

memory access, The motivations for the map are many, and this is no

place to try to summarize the last decade of CPU designs, The Al's

stand to profit chiefly from two aspects of a map:

1, The abliity to share code and dats, This abijlity is

entirely lacking in the DEC system. Its |ack hurts both because of

lost efflicency (larger core images since code cannot be shared) and

lost features (the only way of sharing data [js with the second

protect relocate mechanism, which is an underdeveloped resource In

that the DEC cusps cannot load code In the second segment In a nice

way),

2. The ability to create monstrous amounts of active storage

even though this storage may be accessed sparsely (e,a, LISP and

LEAP), This represents a ciass of problem solutions which are not

feasible under time~ sharing on the DEC system,

We suspect that a memory map is not a c¢ostly piece of

hardware, [f the installation already has a CPU, 128 K core and some

secondary storage medlum, there |s at the very |east $422,000

invested ajready, compared to the (probable) 32-50 K cost of a

mapping box,

We believe that a single~level paging map |s most useful to

the AU’s, A full segmentation system can potentlal|y provide a far

richer virtual machine for the user, but has severa| d]sadvantages:

i, The PDP14 address field Is not really organized properly

for segmentation, This |8 due partly fo its |ehgth {only 18 bits)

and partly to the way indexing arlthmetic is performed,

2, Implementation of a system designed to make full use of

the segmentation may require extensive experimentation with software,

It Is our pelief that the AU’Ss consider this system to be a service,

and should have the attributes of such (Infinite reliability, good

documentation, high versatility), This system should not be an

experimental one,

3+ Unless some cleverness ‘were used in the design of the

segmentation map, the system could not possibly run programs written

for a standard PDP14,

4, Some of the usefullness of segmentation can be approached

in a paged environment by glving the user control over the

disposition of his address space,

5. It has not yet been demonstrated to our satisfaction that

the benefits of segmentation exceed the cost of sedmentation,

If we can agree we all want a paging box, Can we agree on the

page slze? We could not, Ildea|ly, we envision a plece of hardware

which Is based on a 9 bit page key and a 9 bit |Ine number, together

with a system which Is capable of any effective pade size, Thus If ga

particular swapping device has characteristics which suggest using a

1024 word page size, then the system wli|| allocate and manage pages

of that slze, The mapping box, however, |s pointed at data which

look | Ike 512 word pages, but are diddled appropriately,

Unfortunately, this Is a relatively difficult software feature to

provide,

BBN has thought fairly carefully about the optimum page size

for thelr applications, They arrived at a 512 word page, This is

based on several] features -- first that a full page table occupies

exactly. one page, and second that BBN’s heavy use of LISP suggests a

large number of relatively sparsely populated pages, The possible

cost of such a small page size will result from those operations

which are performed on a page-by-page basis, Sueh as swapping,

allocating and seeking to the appropriate disk track: core

allocatlon, ete, BBN |s convinced that the most serjous problem here

ls In the time to process a swap request, and that sufficient care

has been taken fo minimize the problems there,

The MAC mapping box Is designed around a more standard 1624

word page, Both the BBN and the MAC hardware desidns are reasonably

eas|ly altered to change page size, The more serious [nflexlbilities

would be [In the system: particularly In such matters as allocation of

tables for each process, etc,

The addition of a memory map cannot be accomp| shed merely by

attaching a box to the PDP10 memory bus, There are some changes

reauired In the PDP1@ CPU In order to use the map effectively. Most

bbviousiy, the system wants to be able to Use the user nmap

occasionally for referencing the user’s address space, The most

flexibie Implementation of this |s to instal] an XCT mapped feature,

The four accumulator fleld bits of the XCYT instruction can then be

decoded TO mean:

-=map any indirection references & BLT flna| address

-=map normal fetch, store, fetch byte pointer, "from" address

of BLY,

-=map Indlirection specified by byte polnter,"TO" address of

BL. T,

-=map fetch and store on LDB,DPB, This particular allocation

of bits and functions is BBN’s, There are a ocOuple of specific

problems =~ suppose the instruction executed refers to a user address

below octal 22, i.e, an accumulator -- do you always want to map that

to the user’s shadow core?

Other hardware modifications are equally Imperative, The

mapping box wants to trap when an attempt |s made to store into

write=protected pages, On the PDPi18, the memory store is

accomplished after the AC store, Hence, it Is necessary to either

(1) remember the data which was about to be written Into the

protected page, and then trap (BBN), or (2) rearrange the store

cycles on the PDP12 so that the memory store happens flrst (MAC) ==

thus the whole Instruction may be executed again,

The modifications described above have been Implemented by

either MAC or BEN and have not overflowed the very small amount of

spare cara space on the PDP14,

BBN has Implemented a particularly nice BRS=(940)-|ike

Instruction, We mention It here at some |ength since almost any

system might enjoy such an instruction, The InStruction is called

JS5Y83, The effective address of the JSYS is computed, 1 ths

effective address Is |ess that octal 10808, a dispatch entry is

located at (absolute) 1082 + E, The left half of the dispatch word

specifies an address for saving the user mode PC, and the right half

specifies an entry point, The PC Is switched to this entry point, in

exec mode, A jumper card specifies whether there are 64, 128 or 512

words of dispatch table entries, 1f E is greater than 1008, the same

happens except the dispatch table is |ocated |n User address space,

and the PC remains In user mode, The malin advantage of the JSYS over

the UUC is that no decoding |s necessary to discover what function

the user wants, Thus some system calls may be accomplished with

blinding speed (such as byte~at-a=-time fille 1/0),

We consider |t [mperative that the system have a large amount

of secondary storage, This may be divided into separate hardware

units for efficiency (e,g, swapper and flle system), A time-sharing

system |s really a somewhat special file system, and thus must have

the storage necessary for keeping these files, Note that this says

nothing aboyt swapping per se, If you don’t want to swap actively

addressed pages onto the secondary storage mediym (e,9 DECTAPE),

fine,

Cne of the most important aspects of a time-sharing system is

the terminal used by the user, and the way the syStem appears to the

Wiser at the terminal (see discussion of execs). Unfortunately, there

Is no hope of standardizing on any one kind of keyphoard device, We

consider It old=fashlioned to cater to hal|f=duplex |ines, but some

users (e,g 2741's) may requlre that service.

Much of this discussion will be deferred until considerations

of software, hut something must be sald about character sets, The

terminal Is one of the few places that an assoclation Is made between

some bits and a ‘graphle, We could not reach agreement on g

particular character set, but 96 character ASCII] seems to be the

minimum permissible, Stanford will not part with Its 128 character

modified ASCII] plus control bits (12 bit characters maximum) that can

be typed in, There are other motivations for standardizing on

character sets ~~ If any sharing of programs written at different

installations Is to be useful, we will have to agree on character set

conventions,

We suggest as a guide that a user should be able to see some

major fraction of the system from a model 33 teletype, There may be

some internal characters that the system cannot type out at him, but

these should not be essential to his understanding of what Is

happenino,

Since we are currently discussing hardware configurations,

let us diverge from the minimum configuration to one of the possible

augmentations of this minimum system == a two processor system, As

the compute |oad at an Installation grows, It would be convenient if

the addition of another processor would help alleviate that load, and

stii| allow users access to all the memory and 1/0 gear of the

original processor (file system, terminals, special devices). The BBN

system |e being designed for dual processors, They are making the

code maximally reentrant, and at the same time making It easy to

remove the code required to run two processors (critical section

locks, etc,), Clearly the second processor must be identical to the

first == al} CPU modifications must be identical; It must have

another identical mapping box,

The dua| processor system would ental] at least one and

probably two additional pleces of hardware, The first Is a hardware

link between the processors to allow one to interrupt the other ang

vice versa, The second device is an 1/0 bus mujtiplexor, BBN is

not planning to build such a device, but Instead route [1/0 requests

to the processor wlth the device attached to ts 1/0 bus, MAC has

designed a very olever 1/0 bus multipiexor Which essentially

attaches" each hardware device to some processor, Any data coming

from that device |s then routed to the appropriate processor, This

avoids confusion about who gets interrupts,

V, The system from the teletype,

A traditionally neglected portion of system development is

the executive, or top=~level user program, All the glorious features

in the world, such as a segmentation map, a sexy flle system, and

beautiful language processors do not appear to the user slitting at

the teletype, Instead he sees (In the case of the DEC system) a group

of strange commands which affect his process In sometimes flagrant

and sometimes subtle ways (such as clobbering his core Image when he

asks for system status information),

The executive and command language should be as

personallzable as possible, The user should be able to create macros

or cliches which become a part of his environment whenever he Is

logged on; ldeajly, the user should be able to easily EXTEND the

executive capabilities In some uniform way, He should be able to add

syntax and semantics for various pecullar operations he may do often

(e,qg, If he is providing a new service to uSers, SuCh as a new

debugging language or a statlstlics-taker, he Wants to add the

commands to the existing executive command repertoire),

Alspura’s ICL has been suggested as a possible starting point

for a system command language,

1% is perhaps appropriate to cite here some Of the

characteristics of the system which affect the user intimately, One

of these |s .the ablljty to save and restore environments, This is

particularly [mportant if any amount of the user’s work is (imbedded

In his active ftfljles, The BBN lisp system bul|ds an active data

structure which may represent many hours of work, A second

important system feature is that errors of any varjety cause minimum

havoc, Errors should attack only the offensive User and not the

sanjty of the entire .system, Except In very Speclal cases, this

should be easy %to achieve,

The system should, for |ts own health, embody several other

features, In some sort of privileged mode, a wizard should pe able

to gather extensive statistics about the running of the system, be

able to tune the performance parameters of the system, and very

possibly gven be able to dynamically augment the system's

capabilities, He might want to implement some new system function,

and "patch" |t into the environment on the spot?,

It makes |1ttle difference whether we have a system which

provides these functions djlrectliy, or one which has sufficient

genera|lty to enable us to Implement the functions,

Vi, The system guts,

The following list of system functions Is not Intended to be

complete, It is intended to suggest those things which we think are

important In the system, or which may meet particular reguirements of

the AU group,

1+ DEC compatibility, 1t would be advantageous to be able to

run programs generated by other PDP12 users, It might even be

advantageous to be able to run DEC cusps!

2+ 1/0 device service, Little can be sald here, since each

installation will have (ts own complement of devices, Secondary

storage wi|] be operated py the file system (See below), A user

should |dea||y be able to debug new 1/0 devices and device service

code as a semi=-privileged or unprivlleged user,

Terminal service Is a source of heated and necessarily

inconclusive debate, The solution set is as |arge as the user set,

The user would appreciate several things:

-=a minimym number of special characters glommed by the

system to irrevocably mean special things,

~=the ability to change the "character set" == the map from

incoming device bits to what Is actually stuffed in the buffer.

-=the ability to specify activation conditions rather

carefully, such as a set of characters which require activation,

-=the apbl|ity to have several kinds of echoing (immediate,

deferred unti| program swallows input, and program driven) handled by

the termina| service, It Is also convenient to have the system echo

special characters at the bidding of the user,

-=TTY talk rings or crossbar switches fer routing messages

from teletype to teletype or teletype to program or program to

several teletypes, etc, can be very convenient, Particularly If =a

user who needs help or bugefixing Is on the other side of the

continent,

~-=intrarline editing functions operating on the user’s buffer

if he requests that mode, Then the user needs know only one Set of

editing conventions,

~=strange terminal devices should somehow 9et service, If we

nave displays which are not teletype surrogates, we should be aple to

service them as both graphic output devices and (perhaps) as the

echolng device for keyboard Input,

Ce Processes, The mother’s day commltiee agrees that

processes are good for you, Thelr usefulness depends heavl|y on some

other facl|l]tjes:

a, User interrupts, These should represent exceptions

ranging from device errors to system errors or warnings to

user-generated exceptions to exceptions issued from other processes

(wlth appropriate protection), Some of the specifics! a Process may

want to trap all system calls from Its slaves (and thus simulate some

other system, wetc,), may want to know If the slaves’ working sets

expand, may want to bless any "stores" into a particular shared page

(and thus monitor the writing Into some data base), etc,

bs. Interprocess communication, Is is this function Lthot

permits processes to be of any use whatever, Clearly one method of

communication Is to share address space, But thls implies a degree

of Intimacy of processes which may not exist, For instance, we might

want toc oreate a process which |s responsible for creating a Specla]

kind of 1isting, Users want to access this process by sending it

text, or file names, etc, Processes should thus have a communication

scheme wnilgh Is Identical to (or at least ressemples) file-system

operations, Exchange of data among processes may Imply activation or

blocking 0f one or both processes,

4, Flle system,

a, Clearly the file system Is page~oriented, The yser may

request a group of pages to be |ocated In his address space =~ that

ls how he gets some code to execute, But the efficiency of editors

and assemblers may depend only on byte-at-a=-time access to files,

That access should ldeally be handled directly by the system, and

should be extremely fast, It would be helpful for editing if the

file system were able to "bubble" filles, allowing the editor to

create new room for new text, and obviating a recopylng of the file,

b, Subroutine files (a |a 948) are of great use, If the 1/0

transfers and process communjcation are |mplemented In the same way,

then subroutine files are almost automatic,

¢c, Protection and access privileges to pages of the fille

system should be gons|stent with all the access mechanisms In the

system (e,g, access to processes), Users should be able to share

pages of code and pages of data,

dy The fille system should be maximally robust, If the

system hardmhalits there must be minimal damage to the file

structures, Users feel fjle~garbaging more acutely than any amount

of system lnefficiencles (in fact, 1 am retyping thls portion of

text, due to a flle~garbager),

e, If at al! possible, al! file operations should have a

yniform format, Even If the file will physically be located on mag

tape, ectaps, or in the printer hopper, the data transfer operations

should be the same, Difficulties arise in complete unformity, since

neither dectape or mag tape are really page-orlented storage media,

and may not have directories, etc. Special characteristics of the

printer are obvious, The important thing Is that ail these 1/0

operations are in a strong sense file operations (as opposed to

terminal operations).

5, Types of service and scheduling, The scheduling mechanism

should not be intimately built into every nook and cranny of the

system, singe each user community will complain 2apout the Service

enough to require at least extensive tweaking and probably extensive

revision of almost any scheduler, Several features might help

alleviate the possibijlty for compliaint:

a, Allow the user to say as much as he can about the Kind of

service he needs, including estimating running time untl| completion

of the currant kind of computing, number of active pages required,

8% .

b, Arrange a series of priorities, so that background compute

jobs (if they really are Just drones doing the monthly salary

schedule, ete) can be distinguished from medium jobs (assemblers,

compilers) and high= priority Jobs (such as editors), Then a process

. Fey.

of a particular priority can expect service of a certain auajity,

There will clearly have to be some system to insure that everyone's

demands for service are within the computing capability of the

system, A speclal case of these priorities |s the "real-time" user,

who deslres a presumably smal| amount of compute time Immediately

upon unblocking,

¢, Make the scheduler maximaljy tuneable to a particular set

of job mixes, or to a particular swapping efficency, etc, The

effectiveness of this will depend on the degree to which the

performance of the rest of the system is independent of Job mix

effects, Ideally, fairly large changes in such numbers as average

working set size, number of active users, number of active processes,

number of opened pages, etc, should not encounter gross Inefficencies

in the system,

Vil, Consider the alternatives ,isevssrve.

Now that we have |oosely discussed a collection of requisites

for the AU’‘s system, we move on to discuss the various. posSsibi|ities

described In [Il above,

4+ Tha DEC system fal|s far short of our desgription, It is

not a pade=oriented system, and the Inefficlengclies of running large

jobs ara fe|t acutely, The only other really major lack is the

absense of a reasonable process structure and user interrupts, Car|

Ellison at Utah is very serjous|y considering adding such features to

the 18/50 system, He is wllling to accept the overhead Implicit in

the existing portions of the DEC system (command interpreter,

swapper, etg),

Most AU’s probably consider the effort required to really

spruce up the DEC system to be great enough to warrant starting from

scratch,

2+, The MAC system is small, reasonably fully debugSed, and In

a sense, ready to go, The executive is probably Insufficient for

most users == jt is a doctored version of DDY which allows you to

make system calls, The system Is not at all DEC compatibje, but

conversion of reasonably large DEC cusps has been reported to be ga

"one night job," for an efficient hacker, They are in the process

of implementing a TTY crossbar arrangement to route gharacters to the

end of the earth, They have a good implementation of processes and

user Interrupts, The Interprocess communication Ils just like 1/0 ==

you glve an I0WD pointer Into the process’s core, Several system

functions are implemented with processes == a statistics gatherer and

general system~consistency checker, File operations do not differ

markedly from the DEC system, The MAC system does not now enjoy

paging, sO any page~type flles, or address space management are not

avallable, MAC will soon |nclude paging software in their system,

The system |s not prepared to swap, and insists that all executable

code and Windows on open files are kept In core, They estimate about

2 months wizard work would be required to instal] any swapping =- |t

would be a blag Job, There |s very |itt|le protection in the system as

a whole -= |t Is meant for a group of rea] friends, The scheduler Is

of course, designed for a non-swapping system, lt records the

percentage of time granted to requested within the |ast 5 seconds,

and uses this statistic to allocate CPU time,

3, The BBN system |s almost fully coded, and |s expected (by

BBN) to be distributable by summer 1978, It implements most of the

items discussed in VI, There |s as yet no specification of their

executive, In general, documentation on the propOsed system 1S a

fittle spotty, The: exact set of system callsS has not yet been

specified,

Terminal service will be handled mostly by a system

"process", scheduled |ike any other, Only interrupt-leve| echoing

will be handled by the system directly, Hopefully, this will allow

tailoring the teletype service to the user with somewhat less pain,

The features such as TTY-TTY |inks, selective 2ctivation, special

echoing, etc, are all being implemented,

The process functions have not been completely specified,

They are expanding their user interrupt system to Include some of the

things mentioned in Vi. 3.3. The proposal for (|nterprocess

communication Is a buffer with a "full" flag, The buffer can

transfer data only one way, The status of the full flag is a

possible user interrupt, There are grumb|ings that the system may

implement repeated pokings of the buffer (block transfers), merely by

iterating the single word transfer,

The ¥flie system is nearly complete, Subroutine flles, in a

slightly more general form than those of the 940, are planned, The

file system will not be able to bubble filles by itself, File names

will be huge, and the fiie-name recognizer will require only as many

characters of the name as are necessary to avold ambiguity, The

exact format of protection has not been disclosed, Use iS made of

some special features of the Bryant disc to help With error-checking

the file system, The file system will remember date last written,

date last accessed, and date |ast dumped, Temporary files Will be

implemented, they will disappear at logoff,

The scheduler is a fairly complicated device, It attempts to

take account of memory usage, Service request, past history, etc,

They are particularly concerned with minimizing the number of

activations of programs, It will be heavily tuneable, in part

because BBN cannot acurately estimate what the important

time~consumers will be In their system, They Intend to provide

real-time service,

4, The fourth alternative Is to fashion the sketchy items In

Vl into a system design and to build it, This would require about 12

man years minimum, and would certainly require that all the

participants In the project managed to get physically together.

The working comm|lttee has made the following judgements, Even

extensive modifications of the DEC system would not yield a system as

usefu| as ejther the MAC or the BBN system, Any effort here would be

large In comparison to the gain,

[t strikes us that we would need some preSsing requirements

beyond those provided by BBN or MAC in order to Justify writing a

system from scratch, Certainly there are techniques which we would

enjoy seeing In the system implementation (e,g, Lampson’s Objects and

capabilities), but their existence Is not absolutely crucial to the

usefuiness of the system,

So we suggest that either the BBN or MAC system De adopted

for distribution, The BBN system would Present far fewer

difficulties in preparing It for communal use: documentation of the

system |S proceeding with the writing of the system; minimum

modifications to the real guts are needed (unlike the MAC system

which wii! need the pager, the swapper, and probably some protection

mechanism), There is evidence that the BBN system will submit to

understanding and alterations more easily than the MAC system,

VIII, Procedure for acaulring a system,

If the BBN system Is adopted, everyone wi|l| need a pager

ressemb| ing the BBN pager, BBN has of course offered to bulid them,

or at least furnish prints of the design, Systems Concepts (Mike

Levitt, Stew Nelson, and friends) have offered to build almost any

paging box, They think they can do |t for about $38 XK. With

reasonable technology (i,e, not DEC flip=chips) the pager should not

be more expensive than that, lt should probably be up to each

installation which wants the system to come by the hardware necessary

to run the system,

Distributing and maintaining the software wi|l be a painful

process no matter who does it or how it is done, Each Installation

will have to write some special code for their Particular 1/0 gear

(discs, teletypes, etc,), and this must be merged gracefully Into the

system that is common to all Instajlations, Hopefully, the first

distribution wiil not occur until} such time that the Installations

will be able to write these 1/0 drivers without fear of having to

rewrite them to conform to some subsequent release,

Changes, bug~-fixes, and major updates must somehow be

circulated to all users, There will always be the hackers who Wwil/|

seek to Improve or enlarge the system, and there must De Some

mechanism of arbitrating such changes, The best approach seems to be

to invest in one |nstal|ation the responsibility for reviewing

changes, checking out patches, and distributing them, They might even

have some mercenary "trouble shooters" who knew the system cold, and

in the lack of a wizard at the individual! Installation, could bajl it

out, This scheme sounds unfortunately |ike that attempted by DEC and

(with a somewhat longer time-constant) IBM, 1 might bs: a rea}

problem Interesting some high-powered people in anything so

pedestrian as maintaining a system, The one bribe than can be used

is that the job will probably not be full-time, and the guy can hava

a good deal of time free to hack and do what he pleases,

IX, Comments on standards,

Even If all the AU's have identical systems, it may still be

difficult to actively transmit useable programs from one installation

t0 another, There will have to be some standardization of

programming languages:

assemblers: MACRO, FAIL(Stanford),

debuagers: DOT,RAID(Stanford),

implementation languages: BLISS(Carnegle)

high-leve| languages: FORTRAN, SAlL(Stanford), LISP(BBN),

Perhaps a set of user service programs such as these should

be agreed upon as reasonable programming environments, and make

varjous Installations responsible for maintaining a standard version

for use by all the AlU’s, If the ARPA net really gets going, we could

conceivably enjoy complete program compatibility for all but the most

esoteric things,

It appears, however, that the combined problems of standards

and of maintaining programs for a possibly diverse batch of users

need some serjous thought, The task of distributing this great new

time-sharing system would be an excellent proving=-9round for anyone’s

good |(deas on the subject,

Al Lab Pdp-10 to ARPA Network Interface, page 2

INTERFACE OF A PDP-10 TO THE COMPUTER NETWORK

OF THE ADVANCED RESEARCH PROJECTS AGENCY

li

William A. Freeman

Submitted to the Department of Electrical Engineering on May 19,
1972 in partial fulfillment of the requirements for the Degree of
Bachelor of Science

ABSTRACT

The computer network of the Advanced Research Projects

Agency of the Defense Department is a nationwide interconnection

of the computers at various projects funded by the agency, This

allows these computers and members of these projects to exchange

data and programs and run programs on other computers of the

network. This work deals with the hardware necessary to connect a

new computer to the network, specifically, a moderately heavily

time-shared Pdp-10.

THESIS SUPERVISOR: Marvin L. Minsky

TITLE: Professor of Electrical Engineering

iJ) \

Al Lab Pdp-10 to ARPA Network Interface, page 3

Table of Contents

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

ACKNOWLEDGEMENT

1. WHAT KIND OF LOGIC

2. TALKING TO THE IMP

3. TALKING TO A PDP-10

i) Normal 1-0 12

ii) Modifications to the Al LAB Pdp-10 affecting the design 14

4. CIRCUITRY, {MP TO PDP-10 17

5. PDP=10 TO IMP 20

6. TRANSMISSION LINES 21

7. ERROR CONTROL 23

8. INTERRUPTS 24

9, CONDITIONS REGISTERS 26

10. LEVEL CONVERTERS 26

11. PHYSICAL DESCRIPTION 27

12. REPORT OF OPERATION 28

13. GENERALITY OF THE DESIGN 28

FIGURES 70

Al Lab Pdp-10 to ARPA Network Interface, page u

INTRODUCTION

The network is maintained for ARPA (Advanced Reseach

Projects Agency) by BBN (Bolt Braneck and Neueman) who originally

designed the common hardware used and gave the specifications for

connection to it. Full details of the hardware specifications are

available from BBN to those groups who might connect. Many of

the specifications are integrated into this work as necessary to

explain design choices.

The network is organized as a collection of locations

which are connected to the nearer of the other locations via 50

kilo-baud lines leased from the American Telephone and Telegraph

Company. At each location is a computer of the mini-computer

class called an IMP (interface message prossesser). In addition

to being connected to the phone lines, each IMP has at least one

teletype, and may be connected to a small number of computers

located close to (within 2000 feet) the IMP, These nearby

computers are called HOSTs and must supply the appropriate

hardware to connect to the IMP on the IMP's terms. This hardware

is called an IMP INTERFACE.

The Artificial Intelligence Laboratory (hereafter Al) at

M.1.T. (The Massachusetts Institute of Technology) is funded in

part by ARPA to carry on research involving computers. As such,

Al has a time-sharing system called ITS (Incompatible

Time-sharing System) running on a Digital Equipment Corporation

Al Lab Pdp-10 to ARPA Network Interface, page 5

Pdp-10, which is a large general purpose computer. ARPA and Al

have agreed that ITS should connect to the network. This work

reports the design of the necessary IMP INTERFACE,

Al Lab Pdp-10 to ARPA Network Interface, page 6

ACKNOWLEDGEMENT

| must acknowledge the guidance of Thomas Knight whose

knowledge of the state of the art in TTL proved invaluable to me,

Also Richard Greenblatt and Jeffrey Rubin were of great help in

deciding how the device should appear to the programmer. | wish

also to thank my thesis advisor, Professor Marvin Minsky, without

whom all of this would have been in vain.

Al Lab Pdp-10 to ARPA Network Interface, page 7

1. WHAT KIND OF LOGIC

There were really only two contenders for this position,

Digital Equipment Corporation's Flip Chip logic (DEC Logic), and

Iransistor-Iransistor-integrated=-circuit=-Logic (TTL). The only

real point that Flip Chip has In'its favor Is that it is directly

compatible with the Pdp-10 computer, by virtue of the fact that

the Pdp-10 is made of Flip Chip logic.

TTL is much less expensive for the same functions than

anything else capable of performing the job. This is because It

has been very popular during the past several years, and is

manufactured in huge quantities. It is faster than all but the

exotic ECL, and is more than adequate in speed for the job at

hand.

TTL Is reliable, If its limits are respected, faliures

are rare, Its noise margins are good. It plugs into dual in-line

integrated circuit sockets, much less a source of trouble than

DEC sockets. It is very small, so that the entire circuit may be

compact, and worries of pick-up due to long wire runs are greatly

reduced.

There is a wide variety of complex logic functions such

as counters and shift-registers available in single dual in-line

packs in TTL, obviating the need to build and debug such standard

circuits. This also contributes to compactness in the finished

Al Lab Pdp-10 to ARPA Network Interface, page 8

device.

In the case of the Al Lab Pdp-10, even the difference in

logic levels between the Pdp-10 and TTL is not a bar to TTL

because we have a section of our 1-0 buss arranged to use TTL

levels, This is because of the popularity of TTL within the 1ab

for the construction of devices that will have to be connected to

the computer. TTL compatible computer peripherals are also

popular industry wide, so that even if Al did not have the TTL

|-0 buss, level converters to interface TTL to the machine are

readily available,2.TALKINGTOTHEIMPThis topic is covered in detail in BBN Report #1822,

INTERFACE MESSAGE PROCESSOR, Specification for the

interconnection of a Host and an IMP,

Specification for the two directions of communication is

the same for each, i.e., each end of the interface contains a

transmitter and a receiver capable of receiving the transmitter

at the same end if connected to it, or any other transmitter

built according to BBN's specifications. There are four signal

paths between a receiver and a transmitter:

D for data, the data passes one bit at a time over this

RFNB for request for next bit, a flow control signal.

path

Al Lab Pdp-190 to ARPA Network Interface, page 0

TYB for there's your bit, a flow control signal.

LB for last bit, to Indicate the end of a message. D,

TYB, and LB go toward the receiver, RFNB goes toward the

transmitter,

The receiver when it is ready to receive a bit of data,

i.e., when it has room in the interface and TYB is not true,

raises (makes true) RFNB, The transmitter, when it both has a bit

to send and sees RFNB come true presents that bit on D and raises

TYB, The receiver, seeing TYB come true, copys the data from D

and lowers (makes not true) RFNB., The transmitter, seeing RFNB

drop (become not true), lowers TYB. This process is i{terated to

send data. In this way, if the transmitter is empty of bits and

needs to be serviced by its computer or if the receiver is full

of bits and needs to be serviced by its computer, the device in

question may stop the data flow right at that bit, with no

propagation delays to worry about and no re-synchronization

problems such as would ensue with a synchronous system. There is

also no trouble handling messages from machines of various word

sizes as might arise with a byte oriented interface.

Data is handled in blocks of bits called messages which

are of arbitrary length, A way of indicating the end of the

message is needed. Sending a bit count isn't necessarily a good

idea because the picking or dropping of a single bit would

completely jumble all messages thereafter, When the Host sends

Al Lab Pdp-10 to ARPA Network Interface, page 10

the last bit of a message to the IMP it raises LB simultaneously

with TYB, The IMP then appends a single one to the end of the

mes sage and enough zeroes to fill out the current IMP word (a

small but variable number of zeroes) forming a packet (message

plus the one and the zeroes). When the packet is sent to a Host

the IMP raises LB simultaneously with TYB when it is sending the

last bit of padding, indicating the end of the transmission. The

Host interface then appends enough zeroes to fill out its current

word. Then the software may simply look for the last one in the

packet and thus find the end of the message.

When the Host is the transmitter and the IMP is the

receiver the names of the signals are changed to:

HD for "Host Data"

RFNHB for "Ready For Next Host Bit"

TYAS for "There's Your Host Bit"

LHB for "Last Host Bit" Similarly, the signal names for

transmission from IMP to Host are ID, RFNIB, TYIB, and LIB where

the | is for "IMPY, This allows us to talk about the specific

directions of communication.

There is also a pair of lines in each direction on which

a contact closure is provided by one end and looked at by the

other. The contact closure indicates that the program to handle

the network in the corresponding machine is running. |f either of

these lines should open, the message in progress during the open

Al Lab Pdp-10 to ARPA Network Interface, page 11

should be discarded. These are the IMR/IRT pair (IMP Master

Ready/IMP Ready Test) to which the IMP's contacts connect, and

the HMR/HRT pair (Host Master Ready/Host Ready Test) to which the

Host's contacts are connected.

There are two kinds of line conventions for the actual

transmission of signals. If the cable length between the Imp and

Host is less than fifty feet, then a single shielded D, C. wire

is used for each signal, with zero volts to ground being

unasserted and five volts being asserted. In this case the Host

is «called "local",

For cable lengths up to two thousand feet the distant

Host arrangement must be used. Each signal is sent over a

balanced twisted 130 ohm pair using a one volt differential

signal, centered around ground. The pairs are terminated at the

transmitting end.

For distant Hosts, the IMP's end line drivers and

receivers for the lines to the Host are completely floating to

eliminate problems arising from the difference in ground

potential. Transformers are used to accomplish this. The only

effects as far as the Host interface is concerned are that the

Host provides the ground reference, transitions of signals must

take less than 100 nsecs., and the minimum time between

transitions is one microsecond.

Al Lab Pdp-10 to ARPA Network Interface, page 12

3. JALKING TO A PDP-10

i) Normal 1-0

A Pdp-10 is a 36 bit wordsize machine and its input

output structure is arranged to handle 36 bits in parallel, in

either direction. The data is handled over 36 bi-directional,

open-collector lines, These lines are also used to set and read

flags called condition bits within each 1-0 device, which control

various functions of the device and indicate the status of the

device. Flow over these lines is controled by 20 uni-directional

lines which go from the processor to the device.

14 of these lines are in complementry pairs and indicate

which device is to use the data lines by presenting a seven bit

device number special to that device. These lines are called 1-0

Select lines.

One of the remaining lines is called DATA!, and upon

seeing this line asserted the selected device is expected to

place data to be input to the computer on the data lines.

Similarly, the selected device is expected to place its

conditions bits for input on the data lines upon seeing the CONI

signal,

Two more of these lines control transmission of data from

the computer to the devices. DATAO CLEAR Is given when the

computer places data on the data lines. This signal goes away

and DATAO SET is given. It and the data go away at the same time.

Al Lab Pdp-10 to ARPA Network Interface, page 13

Similarly, the last two lines are used to cause the selected

device to read commands and parameters special to that device

from the data lines. These lines are called CONO SET and CONO

CLEAR.

The Pdp-10 has a priority interrupt system, meaning that

|-0 devices can be ranked as to whether one of them can interrupt

the 1-0 service routine of another. There are seven levels of

priority, or Priority Interrupt (Pl) channels. A device assigned

to a Pl channel may interrupt a routine running for a device

assigned to a higher numbered channel, and its routine may be

interrupted by a device assigned to a lower numbered channel. PI

channels are numbered one through seven, non-1-0 programs may be

considered in some sense to be channel number eight. Interrupts

happen by causing the execution of an instruction from a location

different for each channel which may start a routine or may just

be a single 1-0 instruction, This is accomplished in the hardware

by using seven one-way lines in the 1-0 buss directed toward the

processor, called Pl lines. A device wishing to start an

interrupt asserts the Pl line for the channel to which it is

assigned,

A device could be permanently assigned to a Pl channel,

but most devices have this specified by a three bit number sent

to it via a CONO operation. The number of the channel assigned

is the three bit number, zero being no assignment.

Al Lab Pdp-10 to ARPA Network Interface, page 14

One recommendation on how to build the interface included

the use of three Pl channels, one for the data from the network,

one for the data to the network, and one for error indications

and last word in message indications. This was rejected because

in such a heavily used time-sharing system as ITS, Pl channel

assignments are fairly well used up, with several devices on a

channel already. Also, it is believed that the speed of network

functions would be limited in the software in most cases, and the

additional overhead involved in figuring out what the device

wants is the smaller cost.

The one remaining signal in the 1-0 buss is [|=0 RESET,

which is used after a power up or a crash to put 1-0 devices into

a defined and docile state. For example, Pl channel assignments

are removed,

ii) Modifications to the Al LAB Pdp-10 affecting the design

One difference between the Al machine and other Pdp-10s

is the existance of pseudo Pl channels. These, essentially, are

the division of normal Pl channel number one into eight channels.

One of these is the normal channel one, the others are used by

doing what one would normally do to interrupt on channel one plus

asserting the wire, which has been added to the |-0 buss,

associated with the particular Pseudo Pl (PPI) channel on which

it is desired to interrupt. A device on one PP! channel cannot

interupt a routine running for a device on another PPI channel or

Al Lab Pdp-10 to ARPA Network Interface, page 15

on channel one, and a device on channel one cannot interrupt a

routine running for a device on a PPl channel.

This was installed to reduce processing time for the

faster devices normally assigned to channel one, which have been

increasing in number of late. The speed-up comes from the fact

that devices assigned to the same 1-0 channel must be polled in

order to find out which device is interrupting when an interrupt

occurs. This is obviously not necessary if there is only one

device assigned to the Pl channel, or PPl channel. Since it is

frequently only necessary to perform one 1-0 instruction to

service a device, the polling overhead can be quite an expense.

It is envisioned that, at least for the present, there

will be only one 1-0 device assigned to a PPl channel. Also, for

the moment, PPI assignments are to be wired in, even though it

would be a simple matter to make these assignments in a similar

manner to the way that Pl assignments are made. A device that has

a PPl Asignment (PPlIA) can use it whenever it has a Pl Assignment

(PIA) of one.

It was decided that since the new source of interrupt

channels had appeared and since the interface would be handling

large volumes of data fairly fast during times when the system is

heavily loaded, that there would be two PPl channels assigned to

the interface, one for data coming from the network, and one or

data going toward the network. For errors and end of message

Al Lab Pdp-10 to ARPA Network Interface, page 16

indications the interface would use normal channel one.

Another unusual fact about the Al lab |-0 buss is that

there are two processors connected to it. One is the Pdp-10,

which runs the time-sharing system. The other is a Pdp-6, the

predecessor to the Pdp-10, which formerly ran the system and is

now retired to handling real-time jobs and other stand alone

wor!

In a system as experimental as ours, with users as casual

as ours, it Is necessary to be able to restrict the access to

some 1-0 devices to one processor at a time. This selection is

also necessary so that when a device wants to interrupt it only

interrupts the processor it was working with.

To provide for this, two wires were added to the |-0

buss, called PA and PB. These are always complementary and which

one is asserted indicates which processor is using the buss at

the moment. For normal 1-0 operations then, the appropriate wire

is considered by a device as an eighth 1-0 select line. For

interrupts, whenever the buss is not being used by either

processor the lines are toggled at high frequency. A device only

presents Pl signals when the processor select line for the

processor it is assigned to is asserted. A special piece of

hardware remembers the signals and which processor gets them, and

presents them to the appropriate processor,

Notice that a device might ignore the multiplexing If it

gl

Al Lab Pdp-10 to ARPA Network Interface, page 17

does not use interrupts, or may be assigned permanently to one

processor, or might be assigned by a toggle switch, or by a

programmable feature in the hardware. All of these schemes are

in fact used.

The network interface has a toggle switch to assign it to

a processor.

bh, CIRCUITRY, {MP TO PDP=-19

Conversion of the serial bit stream into parallel 36 bit

words is done in the obvious manner, i.e., by a 36 bit

shift-register whose input is connected to ID, It is composed of

five 8570's, The 8570 is an eight bit, serial in parallel out

shift-registers, (see receive circuit, figure 1), The extra four

bits are ignored.

The TYIB signal is onnected to trigger a 74121, a one

shot, monostable multivibrator, with its rising edge. The one

shot produces a pulse of about 100 nsec. duration. This pulse

shifts the shift-register. The pulse also clears a latch

consisting of two nand gates, numbers 33-1 and 33-4. This latch

is used as RFNIB, so this goes away as the data is taken. This

latch also drives a l-usec. delay circuit with its inverted

output. The output of the delay circuit sets the latch again

causing a new request for next bit,

An eight bit ‘counter, formed of two 74193 four bit

Al Lab Pdp-10 to ARPA Network Interface, page 18

counters, is also driven with the pulse from the one shot, so

that it counts bits received. After each 36 bit word is sent to

the Pdp-10 this counter is loaded with the binary number

"11011109" which is equivalent to negative 38 in the sense that

after 36 counts it will reach all zeroes. When it reaches Zero is

the first time that the second order bit is zero since the

counter was loaded. This is anded with the input to the delay

circuit that sets the latch before this signal is given to the

delay, so that when the 36th bit is received the latch will not

be set again until the counter is reloaded, meaning that the

Pdp-10 has copied the contents of the shift-register. This bit of

the counter is also used as the flag to indicate that the

receiver is "busy" (RBUSY). Its falling edge sets a flip-flop

which is the indication that the receiver is "done" (RDONE). The

one shot also clocks a flip-flop which will be set {f the LIB

line is asserted. This is the LIW flip-flop and indicates that

this is the last Pdp-10 word in the message,

The LIW flip-flop enables the filling circuit, The

filling circuit forces the input of the shift-register to be zero

and connects the output of the latch normally used to generate

RENIB through another delay circuit to the input of the one shot.

It also disconnects the latch from the RFNIB output, inhibiting

RENIB. This oscillates filling out the word with zeroes. Note

that filling will stop when RBUSY goes away because this nrevents

Al Lab Pdp-10 to ARPA Network Interface, page 19

the latch from setting.

It was decided to install a 32 bit mode, wherein the

device would receive 32 bits and fill the word. This is useful

because network messages are frequently structured as eight bit

bytes, for control or for ASCII characters. This type of message

is received in 36 bit mode. One out of nine bytes would be spread

across two words, and while the Pdp-10 has instructions that make

it easy to handle bytes, these only work if the byte is contained

entirely in one word.

The middle four bits of the eight bit counter are anded

together with a signal indicating that 32 bit mode is selected

for the receiver (R32 Bit). All four of these counter bits are

true between the 32nd and 36th count. The result of this and is

used to enable the filling circuit, thereby causing the word to

be filled out with zeroes after the first 32 bits.

To input a word from the device, the processor selects

the device and presents DATAI. The appropriate inversions of the

|-0 select lines and the processor select line from the toggle

switch are anded to form the 1-0 select signal (10S) internal to

the device (see figure 2). This is anded with the DATAl signal to

form DATAl SEL which is used to gate the contents of the

shift-register onto the 1-0 buss, It is also used to clear RDONE.

Also, its falling edge triggers another one shot which clears LIW

and loads the counter, thereby setting RBUSY.

Al Lab Pdp-10 to ARPA Network Interface, page 20

5. PDP~-10 YO IMP

Conversion of the 36 bit parallel Pdp-10 word to a serial

bit stream was done using a 36 bit shift-register with its output

being HD. It is made with five 8590, eight bit parallel in,

serial in and out shift-registers. The extra four bits are

ignored (see Transmission Circuit, figure 3).

After being anded with a few conditions, RFNHB is sent

back out as TYHB, When TYHB falls it triggers a one shot which

shifts the shift-register. The one shot also drives an eight bit

counter composed of two 74193's, The counter is loaded when a

word is sent from the processor to the device. It is loaded with

a number such that the second highest orded bit becomes one after

the 35th count If the transmitter is in 36 bit mode, or after the

31st count if the transmitter is in 32 bit mode. This bit of the

counter is anded with LHW flip-flop (set for the last word in the

Host message) and TBUSY (the "busy" flag in the transmitter) to

form LHB, It is also anded with the pulse from the one shot and

the result is used to clear TBUSY, which will occur at the next

pulse after the counter bit is set, The falling edge of TBUSY

sets TDONE (the transmitter "done" flag). The falling edge of

TBUSY also clears LHW, TBUSY is one of the conditions anded with

RENHB to form TYHB so that when all of the bits in one word are

sent TYHB is not generated,

Al Lab Pdp-10 to ARPA Network Interface, page 21

10S and DATAO CLEAR are anded forming DATAO SEL which is

used to cause the shift-register to 1oad itself from the 1-0

buss. It is also used to set TBUSY, clear TDONE, and load the

counter. Its inversion is one of the conditions anded with

RFNHB to form TYHB so that it is insured that the transmitter is

really ready to send data, i.e., that the loading process is

over, before it says so to the IMP by generating TYHB.

6. TRANSMISSION LINES

Since Al is a distant Host the differential scheme is

used. The fact that the IMP end is floating greatly simplifies

matters.

To receive the signals a pair of 8820 dual differential

line receivers is used. They have enough sensitivity for the

job, good common mode rejection reducing noise problems, and TTL

outputs. In other words they're just right. They would be good

for local Host operation too since the inverting input could be

tied to a potential in the middle of the signal swing. They are

convenient when the signal is really desired in the reverse

polarity since one may just swap the inputs and save the

inverter.

For transmission, two complementary TTL outputs are

generated which drive nothing but the line through 68 ohm

resistors (termination) save, perhaps, the inverter generating

Al Lab Pdp-10 to ARPA Network Interface, page 22

the other sense. This provides plenty of drive, the only thing

not corresponding to ARPA specifications is that the signal is

not ground centered. This, in fact, turns out to be a problem.

The line receivers in the IMP suffer from a shortcoming common in

cheap, discrete component differential amplifiers. If the

voltage of the non-inverting input goes much above ground the

output goes low regardless of where the inverting input is, due

to a biasing problem. This problem was solved by raising the

ground reference given to the IMP a few volts above the TTL

ground. This does not bother the 8820 line receivers because they

are capable of ignoring a common mode voltage in excess of 15

volts.

To drive a local Host transmission line one can use DTL

or open-collector TTL with a pull-up. This is known to work

because the MIT Dynamic Modeling group, a local Host on our IMP

uses it.

The cable from the IMP plugs into the interface on a DEC

card which contains the termination resistors and the voltage

dividers for the ground reference. We have a dummy card which

connects the transmitter and receiver together for debugging

purposes.

Al Lab Pdp-10 to ARPA Network Interface, page 23

7. ERROR CONTROL

Error really means catastrophy since the only error

detected is that one machine or the other has forgotten that the

connection between the two exists, usually indicative of a crash.

The IMP has a timer that times how long it has been since the IMP

program paid attention to the interface, and {if it exceeds some

nominal few seconds the timer opens the contact closure provided

for the Host by the IMP. They recommend that the Host do the

same, and we do.

The timing is accomplished by using a retriggerable

mono-stable multivibrator with a very long time in the unstable

side. Retriggerable means that the delay to return to the stable

state may be restarted indefinitely without changing the output

at any time. If the multivibrator reaches its stable state it

sets a latch called the Host Error flag (HE), This flag eing not

set holds a relay closed. The relay is driven directly from the

TTL and is, in fact, in a dual in-line pack itself, (see figure

4)

The mono-stable is retriggered by any CONI instruction to

the device. CONl was chosen because it is the only 1-0

instruction to the device which can be performed without prior

knowledge of the state of the device and not affect the state of

the device other than the timer. This is useful so that the

system can perform the instruction on a slow clock break pretty

Al Lab Pdp-10 to ARPA Network Interface, page 24

much unassociated with the network programs. The delay in the

timer is about three seconds,

The IMP's contact closure is tested by grounding one side

of the contact pair and connecting the other side of the pair to

the input of an inverter with a pull-up resistor to VCC. The

output of the inverter is called IMP Ready (IR). When IR goes low

(contact open) it sets a latch called the IMP Error flag (IF). IR

and the inversion of HE are anded together to provide the ALL

READY signal which is anded with RFNIB and TYHB before they are

sent out.

There is a flag called Don't Interrupt on Host Frror

(UIHE) whose inversion is anded with HE to generate an interrupt

signal to give to the interrupt generation circuit (see section

8). There is another flag called Interrupt on IMP Ready (1IR)

which is combined with IR and IE such as to choose which one of

them may generate an interrupt signal. This is so that if the IMP

is down one may arrange to be interrupted when it comes back up

as opposed to having to check occasionally.

3. INTERRUPTS

The PIA is kept in a 3 bit register consisting of 3/4 of

a 74175 (PIAO0, PIAl, PlA2). There are four signals that cause

interrupts, RDONE, TDONE, the signal from the IR/IE selection

circuit, and the HE signal gated by the DIHE. These are ored

Al Lab Pdp-10 to ARPA Network Interface, page 25

together, anded with the processor selector signal, and inverted,

providing a signal that says when not to interrupt. This Is

applied to the high order input of a one of ten decoder, the

three bits of the PIA register go to the other inputs. This means

that outputs zero through seven of the decoder will be asserted

when an interrupt is desired, which of the eight controlled by

the PIA. The outputs are inverting and open collector, and

therefore suitable for driving the buss directly. Outputs one

through seven are connected to Pl lines one through seven

respectively,

There are two signals that use pseudo Pl channels, TDONE

and RDONE. Since PP! channels exist on the Pdp-10 only, they are

not to be gated with the normal processor select signal, but

rather with a signal that indicates that the device is assigned

to the Pdp-10. This is easily generated with another pole on the

toggle switch used to select PA or PB as the processor select

signal. PP! channels are also only used if the device is assigned

to channel one. This is generated from the Pl register and anded

in the same gate that generates it with the "assigned to Pdp-10"

signal, This signal is anded individually with RDONE and TDONE to

form the signals to drive the PP! lines. RDONE is additionally

anded with the inversion of LIW so that the receiver interrupts

on normal channel one for the last word in a message.

Al Lab Pdp-10 to ARPA Network Interface, page 26

9. CONDITIONS REGISTERS

CON! is anded with 10S forming CONIl Sel, which is used to

gate various signals and flags within the device onto the 10 buss

(see figure 5). Figure 6a shows how the bits are arranged in the

word that comes into the processor (only the low order 18 bits

are relevant).

CON! SEL is also used to retrigger the Host error delay

multivibrator (figure 4).

CONO CLEAR is anded with 10S to form CONO Sel, This is

used to cause condition information to be taken from the 10 buss.

Some flags are set by one bit on the 10 buss being one and

cleared by another, or just one of those (RDONE, TDONE, R32 bit,

HE, IE, LHW). Others are set to the value of a bit on the 10 bus,

i+.2., loaded from an 10 bjt (PIAQ, PIAl, PIA2, PIHE, Interrupt on

IMP Ready), (see figures 1, 3, 4, & 5), Figure 6b shows which

bits do what in the word coming from the processor.

10. LEVEL CONVERTERS

The level converters are ones made by System Concepts of

San Francisco. They are in one-way types for either direction and

in two-way types. The two senses of inversion are independently

selectable for each direction of each card of four converters.

Two-way converters are used on the 1-0 buss data lines

and one-way converters are used for all else. Signals headed

Al Lab Pdp-10 to ARPA Network Interface, page 27

toward the processor are arranged to be ground asserted and

signals headed to the device are arranged to be ground not

asserted, The two-way level converters need a signal to tell

them which way they are going which is generated in the device by

oring CONI and DATAI.

The decision to use separate level converters as opposed

to the TTL section of the 1-0 buss was made in the higher levels

of the Al lab design staff, giving as reason that devices on the

TTL 1-0 buss must be wired in while a device as important as the

network interface should be plugged in as on the DEC |-0 buss,

This was convenient as the ability to select inversion, and the

fact that one need not worry about loading of the buss eliminated

the need for 20 inverters in the device itself,

11. PHYSICAL DESCRIPTION

The interface itself fits onto one Augat wire-wrap, 60-16

pin dual in line socket board. This is mounted along with a row

of DEC sockets for plugging in the 1-0 buss, the level

converters, the cable to the IMP, and a set of lamp drivers used

to display conditions information and which processor is

selected. The whole thing and its power supplies and lamps are

mounted in a Pdp-6 vintage DEC cabinet.

Al Lab Pdp-10 to ARPA Network Interface, page 28

12, REPORT OF OPERATION

There were a few wiring errors but for the most part the

device ran as designed. The only change was from using DATAO SET

to using DATAO CLEAR to read information from the buss. A timing

marginality existed in that DATAO SFT goes away "simultaneously"

with the data on the data lines, causing occasional errors. The

device is currently operating, software Is still being debugged,

13, GENERALITY OF THE DESIGN

The basic interface is quite general, By changing the

shift-register length and the numbers loaded into the counters,

the word size of any machine may be matched. Level conversion is

simple and, in fact, TTL levels are used in some machines.

Inverting the sense of the bits in the data word is simple,

swapping the normal and inverting outputs of the shift-register

for the transmitter and at most the addition of one gate in the

receiver. The "Busy/Done" organization is useful with most

computers. Only the interrupt system and means of handling

conditions bits need be changed in the basic design for most

other computers.

The device could be used pretty much as is on most other

Pdp-10s, and, in fact, there is another copy being built at the

time of this writing for the MIT Mathlab Pdp-10. The clrcultry

for the pseudo-priority interrupt system could be ignored or

Al Lab Pdp-10 to ARPA Network Interface, page 290

straightfowardly changed to additional Pl assignments by the use

of a second device number, |f another group wished to build one

they could probably obtain the prints and wirelist for the Augat

hoard from Al.

row Gre ussas.

: S202 d barat Es + s . . he .Corer R Tanlst A Sustems Programming Environment

Matihanisl Mizmbkin
Glhewvan Mood

Sean RB, Ellis

i ES EL pei GETS re lee ip L Gre LR
pATTETHELInTTry ee THD

we Bi Yale Univevaiiy
Mend Havens Oormeciicot 08520

Tivis paper presents the desioan and implementation of 2
Computivg and programming environment bhatt is different Trem
vironments found in dndustrisl research conterss Boadenio
suznbens research: and university computer centers. The
envirommsnt rerrssents 3 commitment bo using state-of-the-art
techniques in the real world, It is nob oa concepts nob oo
prototuper not (in Lhe traditional view) a piece of rassareh. It
EE none of the perfection of urnilmplemented aosdemic visions. Ib
Ja wrung and deitte avwl anlid and rest. Th dime 4F my gills
computer engineering rather than computer science,

Me oall tha greirormeant *Tonls.”

Wi mre going Lo talk a lots in detzile: zbout one
particular operating sustems DED ss TOPS-20. We believe that EYL
discussion of 8 computer environment or zofluars 2G LEST ing must
necessarily include the detalls of the softwares being evginearact.
in udlaing a8 real srwironment it is not possible to MIELE JWEY
#1ll the unplsasaniness of real softwere. Many of our ches dag
GeclElong were basedr not on grands pleasing algorithms and
techniques, ul rather on compromises. Engdinesrings building real
structures in the real worldy always requires compromise. The
ogect 1s to show that one can compromise without collapsing: We
dicn’t achieve any miracles. Bub we did succeed in pullding 2
compuler environment that provides state-of-the-art faoilities on
Megvily loaded machines Lo 2 larde community of users wha are not
BWSLEnE progvammers. The general wisdom has been that that’s
Lapossibler or too bards or not worth doing: or nob original
researciir Or that it will a irrelevant in 8 short time Decause
@veruons will nave wast amounts of psrsonzsl computing rowers of
Lhat it's somebody elses Jobe or bthsl nobody bul sustoms hackers
Will use It anyway. We did it, Hundreds of people use it every
gE. It swists,

%

l1 Raw Materials: TOFS5-20

Bid at the Dedinning of our atitompth Be Drv thw Lath
of Lhe art in compuling swvironments Lo 2 group of realy trvdivaery
Users: Lhe very first point on which Wwe ad Lo compromise wes
rrlism. The conventionnl view is that serious sustems design
must De dons from Lhe ground upy AT gou want to do it rights LICL,
gtart from zero.

MO suo luxury was available to us, The authors of this
PEPer snd all the others who worked on the Tools project were
graciuste students, Our timo and our resources were limited:
noinoay of fered us the chance to uriertake total design. So we
took as our text the wry words of Eeclesiastes! A living 0d is
catier Lhan a dead lion. Our living dog was TOPS-20.

TIFR=-20 jes muitiprodramming timesharing asustem For :
E205, The basic structure is 8 oollection of “jobs"y anoh ob
being itself a collection of Nierarchically ordanized procossoo
(or *Torks®?,. Each user who logs in cregtes & Job. at the Tool
of hie process trees runing a8 the tor process iv his jobs is
Lhe command handlers the EXEC,

The TOFS-230 EXEC hes Luo wags of nandling commands,
Either it sxeculess the command itself or it creates an inferior
PTOCEEE to execute the command, The reason Tor the difference is
that oreatings losding: and starting a process is slow work, The
autores of TOPS-20 felt that common commands like COPY» RENAME.
gd DAYTIME should respond quickly. The only way to make them
fast is to have the EXEC axscute them directly. (Such commands
Bre oslleds logicoslluy enough EXEC commands®.) For anu other
command: Lhe EXEC orestes a procssse loads the prodram into its
starts Lhe processs and then waits for 1%. mld, After Lhe
process nalise the EXEC resumes Brovaprting commana. If 3
SUDBESOUenT command reauires running another programe the EXEC
clestrows the the existing process and croeatese loads: and starts
UWE 3 Nd process,

Frobably the most distinctive Taature of TOPS-20 is ita :
power Tul command parsers From the user's point of views what the
COMETH PETESer gives him ig Lthe Zxility Lo abbrevigte avd FLL
moves wmportant -- the Eility to det ivmtant information with
Gnily & keystroke or btwn about what oommEng options are available
LG hdme what argurnsnts sre expected of Mime and what defaults
Nave Desn.set for him. These results of tie commu parser are
Coliectively called: in TOPS-20 Jargon frecoonition®? together
Lie make TOPS-20 the intersebive operating system pap
Saco Lavoe,

50 much for the virtues of TOPS-20F nad it been the
perfect operating austen we would have had nothing to do.

The computing snviromment that TOPS-20 creates has tuo
Tundamental problems! Users have no way bo get 23t many important
Taatures of the operating sustem. and thers is no uniformity
whatsoever among the TOFS-20 utility srograms. Togebbhor those
proliant serve Lo oripele the deser., Much of what bw wants ta #20
ne camo pecsuse TOPS-20 wont let nimF much of what TOPS-20
will lat him Go he cgnnot beczuse TOFS-20 makes it Loo hard.

TFL—-20 includes such features as 1/70 redirection
srdgumsnt passingy ang Lhe suscension and exscubtion of multiple
PrOceaneEaiE. But the EXEL has no prowision for using these
feztures. For instance TOPS-20 has the concert of. primary input
rida oubpuh streamse windoh default to the terminsl. Overating—
system osils can redefine bhese gsireams to refer to filss —— but
Lhe EXEC rant, |

{dr againr the EXEL can do argument passing and use the
oonnany] mareser only for EXEC commaradzn. If 5 program that rans in
gn inferior process wants to use recognitions it must use
separate linss for sucommands and grduments znd interfzoce Lo the
COMME Pareer via 8 system ogll.

{hr agains 8% 2a mulbtivrogramming system TOPS-20 allows for
ths niserarchical organization of multiels processessy ezch running
Lnddepernently in dts own address spacer bul Lhere is no zeoess Lo
this Tacility from the EXEC, The user must cormtantly craoate now
processg 3nd re-sstanlisn the state of every process everw time
he wants to resume itr redefining all the functions defined in an
interpreter: rereading into manory 211 the Tiles read in for a
taxt mlitor,

The reason For these wezbnessss in Lhe EXED is simple.
Mave: DED utilities were orddinplily written for use om TIFS-10: an
OEerating system for tne FIF-10., THFS-10 programs run on TORPS-20
iv foonpatibility wodets mdpulative TIPE auntean calls,
Lompatinility mode permits no 170 redirection: no argument
Fassiveds no multiele erocesses —— gid many of the standard
TFS ~-20 utilities ingciuding the linker and the assembler: vay in
compatinility mode.

In Jgadgiveg TIHFES-20 as a compubling snvilronment: the lack of
uniformity th utility programs io a aore sardous problon oven
Lhvan tng artificial onlin of the EYED, lrare lepen ta live

Witioud whist thew absolutely cannot oo. But Thy dey meyl Tagen ie
live wilh inconsistency. The lawless jumble of TOPFS-20 th lla by
Froghans with their wildly varying and disruptive Command syntax
Prevents users from drasving the under luing redularitises of the
Bustenm. They are so frustrated at the surface level — they arse
mass Lo feel so stueild and incomestent —— thatb Liew lose all
taste for computing. The sustem is Bhaoir EIEN

Tie distinetion betwsen EXED commands and Frodrams bhat
run in dnferior processes is wholle lost on most users. All Ley
brow ds nab some things work sometimes and don’t work other
Limes. And Lhe interface botusen Lhe COMMEND PETSET an Pproorams
that run in inferior procsssss iz the ocguse of endless contusion
among users. The program need nol be concerned with how Lo
paras: E8Yr B dates or 8 File nama or 8 ligt of bewuuords? it
simply provides the command parser with z list of oelhions for
@veary field in the subcommand. The syntax for SUOCommands and
arguments oan therefore vary wildly from one program bo She pest,
MoLhing the user learns: azhout the Punctionind of one program iz
ng use Lo him in mastering another,

Ad again: to look abt get another instance of the rirobhlems
caused by compabtinllity moder the file-nams guntax for TOFS-20 in
Muc Drogoaer and more Flexible than Tor TOFS-10: but
compalinlility requires file names with TOFS-10 sunray. To Lhe
user whose valia TOPS-20 file-name suyntas is suddenly rejected hy
the simulated TOFS5-10: this situzstion looks like anarchy. He
feels upsell avd angry and discouraged.

in the wholes, TOFS-20 made for a fairly typical exemple of
& real-world computing sowironment. It had some goon things
gaat it. Many of the bad things served ss cgutionsry tales for
unt nines we had no choles ut Lo aelont zn incremental spprozsche
1t was bracing to have the hateful examples of compatibility mode
ever before our ewes. fHbove 211: it wes thoro.

“

2 Raw Materiazls Part II! The User Community

TOPR-20 was half of what we lrdwrited ah Li Degimming of
Live Tunls project? ihe other half Has 2 oommpanituy of aasore,

There gars two DED-203 in tha Tale Department of Computop
sclesnoe. ne of the maohines typloally has Fifty users logigeed in
gl any ons Limes ths other Hirt. Departments] users iveludas
Faouiity members znd graduate students in grtifticial intallidesvoos
cognitive psgchologyrs and numerical anaiusis,. Many of the .
department's underdraduate courses sre baught on one of Lhe Doge)
ard undergraduate majors use ib For independent research. The |
deeartmental staff use the machines for worderocessing and For
clerical and gdministrative work. The School of trganization and
Management shares ong of the machines using it For research
gaucstiony and administration. avd the devartment geotuslly sells
Wordpress snd computing services to olhore rEpartnants
nrouanout the University. During the school wear Lhers are over
LA0G users on the two machines. Few of ther ore sustoms
Programmers: most have never had any other experiencs with
computers, Some are phusicistss some gre nistoriansy some aro
PL LOSODNersy s0me are secretaries and Clark~tupists,

Nor are bLhere ceilings imposed on ang userss Fast display
terminglsy for instance: are wndverssly: snd wordprocessing users
Nave acess to the full ranges of computing Facilities: not just
LO oan artificial subeel,

Dviousliy another point on which we nad to compromiss in
desing 3 computing environment WER junlation. Traditionally
it is almost an article of faith that the truss systems programmer
must work by himself in splendid solutices protected from the
tir lg-hurly of ordinary users,

Howsver pleasant and gratifuing such lsolation miognt Dave
Beene it was ovwib avallable to us. Ue were not of Tered Lhe ophion
Wf bhwowing 1400 users off the sustoem and malived 4th into oa
rivals elaydground for ourselves. IT we wanted to work at ally
Wheel te Ao 1h Av hve midat of 9 ven giroue of users with thsir
Wi anit: snd Leis own needs snd their own eriorities.

Mang believe that ang work st all on Limesnaraed systems is
now morinund. Boome thew assert: immense amounts of Computing
POWEr Will oe fresly available to avery individual in the form of
Line so-called personzl computer. On scononie grounds alonsey we
dail dt. The design success and ths gxbremely low cost of EQS
fan Tamlly suggest that medium-sized bimeshared mopputers will be

>

compatitive for a number of usars. If aos Limsshared computing
pTfers 5 fertile field For TREAT we geneed st iy br Lhe
Pesesroner who is willing to considsr the Bocialogy of mixed
groups of users 3 problem in zofluars engineering. It ic nob ah
gll olesr how Lo bring current computing lechnmiaues to large
sustens wilh heavy load BYRCEEEE and users zt manu dif forent
levels of expertise, with mang different sometimes ronflicting
gral,

In dealing with users 2% in dealing with the ararating
suatem: we setiled on a ehilosorhy of compromise. Ue decided to Ff
try bo make the Dest orvironment we could realistically build
gvailable to the widest community of users we could realistically
HETVE

In practice that turned out to mean that Tools srograms
gre usslioned for ugers who range from novice Lo supert, Bu
VIO ACE USES WE MeEn people who are in the process of learning
Lhe craft of using computers. Ue expect them to use the susten
redulariyey bub for tasks othe than sustoms Programming. We have
Lo admit that Tools programs Bre nh suited] to truly noives
dead-end users — people who use the mRcnLne infregquentluy only
Lo gst some particular task dongs 210 who avowedly do not want bo
learn about computers. No sustenrs we decided, can at Lhe Sams
Lime hold the hands of users who do not want to learn and yet be
Lerse and efficient for experts. Even desidning an environment
ror expert users to share with eager: intelligent novices is 3
difficult task. It requires the expert user who is designing the
sotiWware to put himself in the eosition of the novice. This im
hard Decause the expert has developsd a cognitive model of whats
HOLng on wien he interacts with the computer. The novice users
by definition: doss not wet have such a models op nas a model
that is incomplete — or WT OVS»

Adie lefht as an open problem the design af systems Tor users
S10 Want Lo fresh ths computer 2% thew would zn elszeirie TEHETOT Or
g Logstor oven?! Either it works so F don’t have Lo think ghout
it oor I want nothing to do with it,

3 The Three Basic Tools

har goal was to build a8 state-of-the-art comput ing
anviranment Tor ordingry mortals bo uss. Dur raw materizls wars
TUFR-30 purmivg on tun hweavilie loaces DED. and 8 group of
WEETE With other Things han systens PrOGrammive on Lheir mincs,
ur Lime and energy Were severely limited. So what ois we decide
Loy inint

The three mador components of the Tools environment are 3
. Process manager called MUFy 2 full-screen aditor called Zs avd 3

=F session logger called 8M [Ellizs®ts WoodS1d.

MUF (for Multiple User Forks) takes the place of the BYEC
#% thw voot of the user’s process tree. Unliks the TOPg-20 EXEL,
UF can execute and suspend mulltisle wvroposses,. HUF zllows the
LEET LO maintain as many different contexts az he likes.
Turlicalily HUF runs one process intargotiveld at any one time and
albther suserends g8ll the other processes or runs them
gignohronauslyey Leaking their input from and redirecting their
Sib put bey Tiles,

Under MUF each inferior process is sssocisted with 3
singles character —— in the following picturse: for instances Lhe
@ilior with Ar the EXEL with Er and a documentation process with
Ts

PiLiF

RED aon editor
a T . A

Figure 13% A Very Simple MUFF Running 3 Processes

Zr Le scoresn gditores is the linchein of the whole Tools
vironment. {ZL stands for nothings by bhe wayl? Lhe very.first
Yale screen editor was oalled © for Editor avd DEEN 5 series of
wiitors with sivgle-letisr names: of which ue srpect I to magn hip
Tanted Tt in umew prughrtull the terser staccato listing of ail
its command options without seeplanstion or instruction takes
neatly hwo thousand lines. Monstheless it is zo natural and
comfortahle to use bhatt rank Dedivmers: reople who MAEVE neva
previously logded on to a computers Tind themselves zhle to oo
some productive work with iL after only an hour or two of on-line
tutoring. Three things make 7 easy to use! the file model that

bon3

i presents Lo the users its uniform command suntaxry and its
interact ivenens,

~oprenenhe a Pile an dF it wares VBL wide Evy long
Croll of rubberized paper. The user doses nol nes a Tile ne an
stream of characters that includs newlines Bi tabi he sess thea
file as 8 very long: elastic zrroy of VEY Winer elastic lines.
There are commands for positioning the cileplay wincoe sanduners on
thls soroll and for positioning the cursor snuwners within be
displag window. The cursor is the foous of each aditing
cperation. If the user positions the cursor zt existing btext and

wed Lupese he overwrilies the contents of the filed if he positions |
© the cursor zt what hw perosives zs blank space and tupess the

eal tor automatically extends the record or the file to
gooommoagte Lhe exira characters. What the user seme on bho
soresn Gt any moment is precisely what iz present in the
Gorrenpmiiing section of the file.

L's commands &re agssighned to control characters? snes
For the cursor Reuse: little use iz mods of sraclal function keus
#inee thew require the user Lo move his hand 3Wayd From the
tupswr iter keubosrd. The oodeot hae been to make using the
gli tor an extension of touch-tuyping on a regular tupsuriter. Ths
Commaris take a rich set of grgumesnts in 8 variety of formats.
Tre Lardy commands a single beustroke: initisbtes araumant mods.
wither When terminsles with the ediior command that takes Lhe
grojumant., Every command also has 2 default zotion when invoked
WIth ono araumsnt and many have second defaults involed ba hound neg
Lie fargl kewstroke and the command keustroke with no aradumant in
CET LERE.

In addition to text and numericzl arduments: 7 FECOONLTes
two kinds of cursor arguments the box znd Lhe stream. 6 Dox
Higunent functions like 2 scissors: snipeing out a rectandle of
text Tor movingy deleting: or manipulating: # stream srdumanh
Tunctions like 3 reader: moving from laft to vag ill oitinite
gyui-nf-livws starting over again al Lhe for lefls FN vesting
Piginh adain. Box arguments make it sasw to handle text in blocks
grea onlumnsy stream arguments make it sassy to handles text in
CT ERes 3nd sentences,

LZ tries hard Lo keer bthe time betwsen any heustroker no
matter how complicated command LL dnvobksss and visual response
Lo tng keystroke st lesz than g second. For graphic characters
the visugl responses is ust the character itzslfs Gisplaued at
Lig current cursor position: and 2 responds Lo gravhic characters
BYE DETOMETE Cursor Reus very owdokly by lstling the TOPS-20
mil hor [DECBOMURGT echo Lhem directlys without causing 3M

BHPENEIVEe process waksup. Some operations: Like reading ang
Writing a Tile or semrching for a string: ran Eke 2 loved Lime ow
ards Tiles, To kesy bho user From winwlaring what the oditor is
Sodrd: L omaintaing gz live counter ot Lhe bottom of the hana
that keeps track of the progress of the editor command 3s 3
smile Frisndly gestures,

Although MF maintgins the states of several erooesanse 1h
cows not maintain the digsviagg outnot of thee srovesase, Thies
lack lad to tne development of SH (Por Session Manager ls a
CE-Window version of Lhe INTERLISP Programmers sosistant :
Lisitelnan?7l. There is only one window becsuss our berminzsls i

Mave small soreens and becouse TOPS-20 makes: such windows
BAPENBLYE. Any livns-oriented program ozn be placed in the
WTI

sai hor
SH

JLo

Figure 23 LISP Running uncer 5H

Sti nas two modes! In edit modes the user can give any
normal Ld oediting commands such 2% scrolling or looking at obher
Tiles. In BM moder every heustroks the user tupes is input to
the erodram rurming under the editors and anu rogram ontoul ds
sinulibaneously displaged on the screen and recordsd in =
tranmoriot filo.

The usar oan switch modes with sindle-ksustrobe commands.
In BM moder & program running under Lhe soitor mengves exactly as
LL does wWnen run under the EXEC. Whenever fhe usop Lupes Lhe
WE-OUT ROT hay =— dy Lhe miviile of sweculing 2 program —— OH
BUEP@nds Lhe program and switches back to adit mode with Lhe
Lignaoriet na thm current fille. Wiaunld Pidnlity ds alunos
mintainsd ebwesn the display and the Ltranscript Piles so thst
sWitohing from SM mode Lo edit mode is instontanecusys With no
nd LO rewrite the soresn.

The 8M transcriect can De edited like avy other fils. Tha
UBRr oan axtract fawxl from the transorivt awd ive 1% 22 ingul Lo
Lie program without rebyping. 8M remembers the location of the
mast recent Input lives resd by the programe zo it ig very opsy
Lo omove ur anto the transoriet Files make 3 corrschbion Lo 2n

18

Input lings and then give the corrected lino ade Loy Lhe wrodram.
LaRras of interwveeted languacdies are DELL ulnr Tul Frome spf OO
DEcaunse Lt provides 3 history of interactions with bho
interpreter ~— on history that the user DRY Shrreth ang refing in
BMaLl successive steps,

Sif works well with any program that doss lLine-gt-g~tima
I/7°3: 1% ode particulariv ainetul for Dr omEing Lhrouwgh groups of
Files, For exampler 3 user cpn run the Tools LS progeon tn lier
g group of Tiles in a compact multi-column format: which SH
FECOTOGE In ils transcript. The user can then move into the
Lranserirt file znd use 3 two-beustroble editor commane ho visw
gach of she files in turn. Ab Lhe same tine ha Can wuss gnohhse
two-stroke command to submit ang of the file names Zs anput best
boom DELETE coamavwd thet eda mad laiived up under BM, In a uhiles
WET Fie Nas reviewed all his Files: he ozn use the command Line
ne built up Lo delete the ones he ao longer wanks., &b no time
noes me ever tyre 3 Tile named st no time does Pe use & ommaTid
Lingl ne cawob use with ane other program under SH.

4 +
vie ole

4 A Tools Demonstration

r og i en iF Pion ld doy rena nen am an a ean vd a ER Te
dhe mlz LEAT RF ALAELY LE) CHERMWIERTTRLEG 8 cuniamios LEY LRT San Tt

os. wien alg 0g ane, APY, ae tule mrs au 5 - ty WE ems ween aan Tocris o]e in ria 3a Rn i lit * ”) . » . : 3

BYWVILTONMENT on vaper bulbs given Lhe Lochnionl ‘prob ame suaorlabaed
Wie BuRRIGLAn 8 video termingl ang a DEC-20 8% an grrendix bo
Sh 5 pinata ov ons regeBl A le SE oy cr pin i . . : sah

Svar ORG OF TE Bapore we mill try to aimilinte #0 re layun
ogmonstration of the Tools shwironment,

ha pew che pees ee — pee me am 2 a S3 Late 2 yw 3 av rt an. , * 1 PT — sre. - ve - ge fey Le i,Fiobure a user who 18 weitivgg 3 BLISS program ivy tha 2
galtor process under MUFF, Another process under MUP hoes an BEC,5 was ri ge Moe ontmiopnoi,LopeatinREhasseinsTCerrie:vyoegralabneubppabpustyme:VILibGow,sow1LSATCayeiprSeneatinRpFal another has Lhe on-line documentation for the BLISS Fun—-hime

3s ~ diiraryg,. de don’t believe in hard-copy manuals? every Tools |
Program 18 documented on-line and svery document interzchively
LITRES Or LATE)

ry HLTin.

PME edo etd hp
k i £1

~ = ~~ BO 8 are ay 1pFigure 3: f Dimple MUF

Mow RUR0ss That the user wants to look zt the
Socunentation on The BLIRE PRINTF routive,. Thies bewatrobes tobe
Me bit wn fs ew te di aim p08 pow. sve mies aie + ogi al a Eo vn ox LiLMat TE TOE tH UMEnIL anion Tard

ar me alyRdg

Erm a ie Som rE any, : ah pa lismLda represent the control shift with *3 ~% iz the {arg?
: kos - 2 E vee vvet wed lnm ey war <3. ae Sana¥e ale IE en: 3 +QonmaryEd Zr tiwe {writ mopman panees thw Istter T Lo MUFF OMUE

Lrwvikes the T process. Two heystrobes plus the name of the
eng ten TERS te 3 Bn ey aerouting disploy Lhe documsntation?

NT i ne hen aAY printf AR

A rl ON Ee ey omy ww Ap eT Und timer cer OT Rr pe A — A AA ae RESA Bom gered 23 SE 2005 LL tions the odin 13 WETS 3 i
. ou) 0 TR Shbra pad wes SIE py 2. orisly pe pre] ye Ay Eres re tiele AN HERgocumentation for PRINTF. Thi mivigdle bmgsbrnbes 20s david 3a dls

suspends the T process and resumes the editor procsss right where
A i

FS eine rR RES, Li ate Poor ione em ee NI pr female TELE ral ti are cerieen TE oe be aa 0) FsMO BUPPROSs the ussr | VEE aR gt vk} WH omOrsS CompPLlic atten MLA
ahruciureal

1

PALI

POEL roar opdidap 0 Ton
FE T Fi 5

Figure 43 AUF with 4 Forks

his time Ne da in the 1 FTOCSsesy rumming Lhe LISF
Fanterpreters sng he has Just discovered a bug in one of is

Functioms. Tuping the ingles keustroke 8 will switeh im bo thn
gli lor processry which will display the last Tile be edited: Lhe
Flies containing the function. (If arother Pile were lasts tuo oP
theses mores keystrokes would Lake him to the correct file.) fea
makes Lhe correction: marks off. the corrected taxt by noving the
Cursor over ihr snd lezves the editor. The Bl tor elle MUF tno
resume WiSF and supplies a3 input Lhe Last marked of? with the
Bursar. The function hess now been coprectec with very fou
keystrokes and very littlas affort: both the LISP and the ecii thor
Frotess nave beon maintained intents and the ussr can orocood
With debugging.

While MUF galinuws 3 user to have multiples forks Baacuting
simultaneousives it iz often more convenient Lo use Zig
Rackdgroundg-comed lation Parniditu, This Tacility allows the user
Lo start up 8 compiler ProcEss behind the editor procoss, Trio
LEar on continue editing while the compiler is running. Tha
sailor then informs the user when the comidlation Finishes and
displadgs any error mesades one at 3 timae rositioning the cursor
aL the location of the error in iho Bourse file as it dizsplous
Lis message,

This facility works with any compllery including document
compilers like Scribes and hos been extended to support othor
SRLTIINTONGUS Activities. For sxamelsr the BZEEr oan run a prodgran
peniawd Lhe editor that seszrohes for 8 Laxt pattern through 5 set
af Tiles? when the sssroh is Fivishods the editor will ster him
Lhwough 811 the Tiles thal contained EF matohr positioning the
DUPBOr at he location of each match in turn. Ir he can run the
network File-bransfer program behing the Saito or uss
Background mailer to mall 3 fils he as Just edited without ever
leaving the editor.

Mie LB2LT5 give our user a really sophisticated MUR:

TLIFMLIF

PRED dor oodtoe talnet
= T £ =

Hh

LIE

PEEL LL TRE med
i 1 H

Figure 52 A Fsnu-Splendorsd FUF

This time he is runing LISP under a MUS under SH 21d
grcouiers og problem that he commol 850 easily correct. With i
#lvigie keystrokes “Hr he switches to his sail fork and sends 3
message To an older awl wiser frievvis: asking for help, Resolving
Lo put Lhe problem out of his mind for 8 while (and secures in the
Lnouwleage that his LISP fork is preserved intzeb)s hs cess ue hi
the editors a3ain with a singls stroker and begins work on
grote file. A portion of hin latest research report im TE EL
20 With wo strokes he sets 3 document compiler to work on it
being the editor, He then decides that he vesds to look al some
information ne has stored on another machine, Throe Laustrokes
Lake him up bo bis telnet fork and log him on Lo ths remobto
maching Dy magns of an sulomatic initiztion fils tat debts read
whenever the fork starts up. 6 minute laters NEVI read the
information he wantedrs he is Dack in the oditor. 4 sustem
messade tells him he has mail and two keustrokes bzke him down Lo
the sail fork -- ang 20 On awl =o on.

Ths sensation of working in this snvironment is like the
sensation of working at 2 well-organized desk or cooking in E)
wal l-organised kitchen. MIF: Zr and 8M a3ll dovetails Bivivvd Lhe
gser Lhe senses of zseaplesc, sffortlecss bronsfor of control.

em
3 De

i, =.3

9 The Tools Programs

The Tools swsdronment is dunsmio. Users revort bugs and
Traquently make suggestions for new Tesitures ang programs. Tho
Taols programmers fall draduaste students fix Dugs quickly and
groped auggestiong #8 Lime permits. Changes can comg audoicly ang
FoLential users of Tools programs gre warned bhatt they must be
girlie Lo hese up. Every singles grogresm is documented on-line in a
uniform, formats dooumentation is kept up Lo dats, and
prminuncements OF changes are made via 2 *bullstin bhoard® facility
Lat users 2xaming sufomatically whsnsver they lod in. Frograms
such a8 the 7 editor automatically display change listings? every!
Ling d USE TUNES 2 he gets 3 list of any changes made since the |
last Time na ran it,

Our response Bo the demand for stability is that a stanle
snvironment soon Degomes ossified. The problems caused by an
ervsaronmaEnt That onanges are far oubweidgihed Dy the advantages of
zn enviroment bhatt responds.

1/0 redirection iz possille with 31) Tools srograms. With
& simple entry on the command linge: input Lo 5 program that is
normally read from the terminsl can be read from 2 file. another
imple entry redivects terminal oubnul to files,

Virtually all the Tools programs acceet arguments on the
FEEL command line, Users visw programs thal run in inferior
Proceanes 2% wing Just like ilt-in FXED commmveis —— as atomic
Lrapmantioni. Tha uzer dogs not have to Link about ohether he
18 Ain the FRED oriin some inferior procosss.

Tonls prodreams epnody The principle bhast common
pprplications should be simple Lo sxprsss. The programs Dave
been designs so that thelr default Denhaviors the raosult of
surpluinag no srguments Lo the programe iz what we bhelisve mosh
wssrs want most of the time. For sxamplsrs 3 program thet
Gisplaws disk-sezoce usade Will sssumses OF no argument do
specified Ligh the user wants Lo knoe gioout hills own.

Tigre gre over 38 nnaarea Tools programs (see the appendix
for g summarwl, They Tell into twee grourss: Job controllsres and
file maniouiztors.

SGob controllers ars erodrams used during 2 session Lo
manipulate various sspescls of 5 user's environments oflen hu
maniiulatiyg processes that contain other srogramns,. The primary

t%

JHEr-camtenal tool ig of course MIF. Hbher Job controllers are Lhe
Lal version of the DEED, variomem EXEC --1dke Looligr. aed 8 pad
Hr our copmawi-File processers.

The Taois ZAEDC is nob vastly different Prom the EXEC ihat
ane with TOPE~20, We had ow stomach for walling lavgm-sonls
chigedes to 35.000 lines of assembly language. Instoads myriad
minor changes made Lhe EXED easier Lo use and intedrated it into
Live Tools environment. For gxameler we added more convenisnt
goreviationsy made the syntax of many of the commends more
consistent provided dood defaults for command arguments: and
mp lemented 5 feu convenience commands. A simple Dut imcorbtant
change «was Lo gllow recognition parsing of file names and usar
NHEMSE On the command lines of arbitrary programs. All of those
CRENGEs Sree Individually brivials Dut bhogethsr they make Lhe
Tole EXED weacdy Frimndlier thay the ordginel. Us pede our ma lor
clhEndses elsswners Duy imelenanting new programs such ss MUFF: Ze
ave Bid other dmatallations stiacker the EYED divectlius awl um
GLeouss Delow the mulii-forkivg EXED ang he FOL EXEC. (Other
installations approgehed bhe EXEL with the hig hack? we decided
boy pay Attention tn the details.

IMEED is 8 good sxample of an EXEC-like job-controlling
onl. TOWE-20 has a lreg-structure File susntons wilh gach
AlrecLhory in tne tres assigned 3 disk quota. There is no way to
resssign aquaols directly From one sun-directory Lo anobthsred vou
nave Lo d90 through the root. Users have to shuffle space up and
down in their directories and subdirectories: painfully. INEED
simulates 8 betier system. If a user wants more spaces in one of
Mls sup—dirschories he tupes *INEED {sub-directory ngmed
Dincremental incresse rt, INEED automatically walks over the
directory trees moving unused auots up from subdirectories Lo the
rool directory and bhen down to the specified directory.

MAarliiR is another prodram bhst makes up for zn EXEL
ceTiciency. The EEF a commer Tor oregbing divecioriss in
YETDDSS 3nd requires sllipls command lings. Most users do not
now wWinsat many of Lhe command options mean. Turiczsllur & user
wanhs Lo oresgte g sub-directory wihinse parameters 32rs Lhe same 33
Nid nhher sylv-ddesctorias, MARGIE rung dn Lun movies The fivat
aves ul Lhe onarazcleristics of &n s<isting dicectoryy the second
Cresgtes a direscltory With he saved characteristics. Once a user
nas establisned 8 ongracteristics files Dy running HARDIE in the
First moder he can orezthe a new sub-directory whenever he likes
Simple vg tupiveg *MAROIE {divectory names which runs tha second
MICHIE &

{ls to look at another Job-controlling srogreame zllows a

ii

Ear Lo executes oommandds from # Pile. The Err wemuimas »
Bimlise Poarilituy sh 3% da wot vat poner ful, MY Blinn The
command Fille Lo be parameterized ad oommared-ling gardumesnts? the
FEARED gallows wo commaned-fils pETEmETOrs. Whereas an BEXED command
Pile ran comtbalin only Byes Tommie 8 IM command Fille can
Cobain lneul to be rams yy Programs as well gs FXEC commons.
BH iE a slower Dub sven mors powerful version of DOF it can
redirect iis primovy outed to Tiles: 14 does not eon commands
#5 it executsss and 3% com recursively invoke other 53H command
files,

Files manipulation is serhaps ths most traditional task for
computer utilities. Buch utilities zre used to orenter aaits
BRECON and compare Filss. There are over twenty such programs
gong Lhe Tools utilities -— Ze of couraos most prominent among
them,

HiFr the Tools program that Compares two filles: is 8 dood
grample of Lhe difference in zeproach Delwsen EB ovenaor-supil dec
WLillity and 3 Tools program, DEC’s fils DOMPETEr 1s cgllead
FILO, To compere Lun Piles: filed and Tiled yon tups
"Tilcom®. The FILODM program then medias ang prompts for
ardumeEnts,. You must seecife the input Files anh output Lo
terminals and uou must usa 3 format that: while not unique to
FILCOM: dis slightlu different from ihe format for other file
manipulators! "tihyimfilel file?" Then onco wow dst the
difference listing uou sust wpe A to get FILCOM to terminate.
To do the identical task with DIF requires the single command
"Gif Tilel File". FILCOM has problems With some Tiles becouse
iL runs in compatibility modes While DIF can Lake ang valid
TOFE-20 Tile name. FILDOM producos noileting shat dis Joan
informative than DIF sg liafing,

TRANS: another file manipulators is 8 powertul tonl for
Lravmforming ong file into another, It Lakes two arguments a
rEduLar-axpression patterns which describes logical *rocorda® in
gv odnput Tile: ovwl an oubput format: which oan contsin Leet Hd
pafarenwas Lo partes of Lhe inoue record matensd by the patiern,
The regular-expression language ig =z zhandard among Bhs Tools
rodrans and 1s used Dy many other programs? Lt ia Comparable Lo
tl Tar sore possetul than Whe FELLA -RNPression lanjuads on
LMNIX,. TRAME 3s input ang output default tno tha terminal but can
be redirectsd with the seme 170 redirection mentae gE all othar
Touls programs. & tupical application of TRANS Will De bo
bravmform 8 text File comgliating of information about poovlar
including sawr nansy addresses phone numbops art hivih date in
Boma atansarsd Torme dete 2 File of nothing but Vrms my
RIGresses To De srintadd on mailing labelz for 2 moze mailing,

3

- < a . son. = pew6 Command Suntax for Tools Programs

SY aaa Spay ry rem eien sa eed ly pen he ten en Boiat i ee JT wwina RE GEL Ee: IE LRRLE OF Omar sunny MBE Sanwa fm yd iis

ing of oomevomisen we ohose and the reEssonins Dehidingd them.

Vir if past ty ai el Trimm Tim ems yen mga toca theese VASEES22BTval Widoa li add ULE PTOGQT EME LISS UES Sams Very s Lies

comma saunter. The similarity of the Suita makes 1t waauy Pow
pails Lo learn how Lo use ned programs. The user who fesls
confident aboul hiz mastery of 2 piece of ountas like

vee tava gos ES ierind 2 ei le revs abe »wERge! Ls [filszpecl

we, eral re ie br ro pars pari es rem SB win ravios Ey 0 pene dail vr re. gi3gonye3akoaETT wea Sonseting v3 Familiar ang i SRBEUTIVG IN

wEagel LE D-oodtbrwsupil [Pllssoac?

nel arrmryt ree Tis nemesiel dnd im woun tbmit. +21 LiL3 vie ede \{ ROK Mis LS os 13 ~ 2

ev wine red a TRANSL Nuh FO rr aw ard aay 21 a o see > : “ Fi Jee. 3.usage: Thad D-ooddglimtl{ format description i{output
Yn ime ied oh al rnin Fe ay Son poedescription Pilespec?

 TI, OMI Jn wom de semi. yp ANG ss as vw awk — oh et - rv: vas - oa Yew sueling uwniform suntax encourades users Lo sxepand their
an ann) ame ase sna Jot me git ated ne arad® Son we 3 ne Taees ve eb age. ne aveurpierastancdivyd ang thelr skills,

: thee . ed “a, She uoponsremodgryedtSBwaAai~This suntactic styles was adopted from Unix, From thert woian of asses ytoeaA)SdoswefaatiVileFeitgnevepithgyraateThelemonbadisEEsinannieiteuser ‘es viewpoints its min virtues are simplicity znd uniformity,pe pa Lh AL iin ara Ls at 7 DraaPeraee5BeesmnpavelingaLkoe3From the inplementor’s viewpoint: the suntaw is trivial bn
FR 0 re yom memorials 2h 1 ey en; en ~—. han, eens Re ann Sve 03 igre fe an 5 goes . vo. a 3 waa ee a " as. pod son eve v0Lp lenent reliably. He oan devole his time Lo making 3 TT Em

wsnonrr. 3 {on see ae went wane Rog RL wr Ye ae es : aver vy pre ~~ av ioe eee. TY ar wa Co acs pal i bn he ain Sr om ve puri. oWorry instead of making 14 parse complicated sunltax. The simples
sunita glso mekes 14 sassy for ong program bo involo another
Wltnout needing 8 complicsted parser 33 intermediary. These ares
not dnsignificesnt considerations for environments that Ere
perennially short of syshbems programmersey and whers the choice isEen3aRnLla£2hEosfpraisAaAsienaso|alkCantywien Delwsen 8 program with sisels sunisx or no mrodgram st 211

DINE er one ah) pal, 8 fh HL ea hia peda enn phn io reall VE se Se Ee at Ee et I Se irr adPe adanificeant drawback of the Tools suntas ig Lihat it
doesn’t bake full advaniage of the TOPSE-20 command parser.

r en eae o 1g was som Reale iah vi ein acer — ? emai ha miivagy 2 von! sonisne ey ee: t}e py i x, .Tuping a& *?* gfter the name of 2 Tools program Will not tell theTip oe per epeeJLRSESLtrMedes02SonatpsisoaTndRyfpeeniabewo,LEmtnURETwyenValokwer angthing shout the expected swuntax for Lhe programe zo it ;
a ho SE ee rc a i A pT or TaLs hawill for gn EXEL command. Likswiser recognition of abbreviated

2 ser one ode aus ¥ z on o =f spon men Io Hen tem Ye v1 grniped Nr enn] o— evn et nen mesgee ese a3 he Jel he, aa Se per oes oearguments will not work. Ivaling Tools programs with Lhe wrongponealtremriLACE os Lp AY ny 0 tg SEEtalkmmseeye3TBROlmeliaCALIelye1.BRrgument, |uUntay oar With no ST HAMENLE WLLL PANT 8 TEnirwisy Such

iT

uae 18 [-cocdtbrumnani nil espn

Chul this reminder wont th Mele Lhe user vremssber what Lhe
NOV-ENEnonis single-lstior switches maa. Nor iz the reminder
very anteractiver? the user can’t gk for suntax help in the
mickile of 3 baping 8 command line. For Tools programg: the D3ED
dogs Fill out abbreviated Tile TENSE Hl user names on hhe
program command lined this is hasode beczuse most grodgumernts Lo
Tools programs gre file namss: but it doesn’t hele the user who's
completely in the dart zz to Wight Lhe swiches mean znd wis
araunsnts he should be giving.

A Tair amount of good grparinenting has been dons on
interaotiver sxtongihle Dommand parsers. Lantz Lantz2o7
Gesor Lies mn ambitious parser that was part of 2 distributed
computing sustesn? unfortunately it never progressed Deword bie
grparingntal stade, MED LAZMELY ‘avd the POL OBEYED CPCLEYEDT ohn
iru Lo provide sxiensible rarsings Tor eracticsl reasons: both
are unsatisfactory (bhey 2re discussed in cdatzil later).

{ivwinusly the Dest of all rossinle worlds would have been
simpler perfectly uniform suntax combined with full access Lo Lhe
command parser. We didnt have the time or the resources for the
pest of gl] erossible worlds: but neither did we throw up our
Nads in despair and say that since perfection was impossinle we
Wwouloan' th even tru, Simplicity and uniformity were elesrly within
our reach? 8ll they required was disiplins.

ei 5l
YS

1 2%
i
ta’

7 A Tools—siule Network

A good example of the Tools approach to #0 tuars
endinearing is how we implemshbed our local network.

The Computer Soisnee Department at Yale connects 231 its
computers —— wo 207g, two VaXes: and two PF a mw ig
Chansnets a8 high-spesdr, Ethernet—like iloczl ares network

CHoon?9» Metozalfe?al., {A number of Apollos will be zodcod
siartld.) The initizl hardwars ang software for the network came
from MIT and were modified here. nee the hasic network was up
and rumings along with the user-level software Tor electronic
mail and file transTery we started to think about what we roagplly
wanted Lo do with the network.

Une of the first observations we mads Was knat most
existing networksy such zz ARFANsLs CHADSHSL » zn Elhernety are
Paintul to use Decaus: they mnaske the network 3 oompletaly
separate world, In order to send mail Lo someones wot have Lo
know the name of his computer account on the host that you wisn
to send the mail to —— which maw nob be where he is currently
working. TransTerring files requires you to run a spaclal
file—transfer program: log in to the remote machines ancl bhen
move the Tiles one at 3 time. Beyond transferring mail and
Tilesy these networks are seldom used because they are so poorly
vbedrated with the rest of the user environment.

Our first steps thens was to develop the macnanisms that
woulda enables us to integrate our loczl network into the Tools
enviroment. Ue nesded some sort of glue to held our
heterodeneous collection of machines together. So we CIE Loe
and implemented 8 centralized network data base Filled with
information of network-wide interest. The dats nase contains
information about peoerles (such as user Ils: phone numbers and
nffice addresses)? it contains information about terminal
locations and network host names and zoddresses? and it contains
glectronic mailing lists.

The most important thing in the data baze iz the
infTormgtion aooul peoples since Lhis is what enshles the rest of
Lhe network softwares tao link 3 particulsre user ID on & particular
machine with aoeess privileges Lo dsts on 2ll the other machines
on tie network. For examples the network file-transfer sustem
usas the data base Lo decide which accounts on obher hosts users
CEN SORES automaticzllyl 3 user can transfer files Lo his own
gooount on another machine without having to log in to the other
ECL.

oe3<5
fose Nd

Since one person usually has sccoounts on seversl mechinsss
il im umetul to designate one account Tor receiving mail. Doe oof
bie properties sssocizted with 2 person in the dats Dass is his
preferred computer mailing address. The mail sustem zoosols mpd
griciresused Lo Lhe perzon or $0 any of his computer gocounts EVI
sends tne mail to the zscoount wheres he prefers to receive it,

The FINGER program prints oul a list of usses ouarrant ly oon
the system and some of the information the data base bnows aboul
Lhem and where their terminals sre. FINGER can also see whethar
g specific person is logged in to zn of his accounts on the
network or snow 831l1 the public information about him such as his
nome phone number znd his intercom number,

Our TH prodram permits 170 redirection zoross the network,
It is glzso fully integrated with MUFry s0 that the user: once
logdea in to ong machines can log in to any obher account on anu
maching with no more than one or two keystrokes,

fur dats base is 3 novel implementation of a
gensral-purpose *relztionzsl® dats haze in LISP, The datz base
FUNG 8B § Barver procsss on ong of the DEC-20e and aocepnls
requests Tor comesction from other machines on the network.
Users agocess the dats base via the program UDR. UDB translates
user requsstes into dals-base transactions and opens 2 nehworhk
comachion Lo the dats Dasa? once a connection is eztablisheds
Lhe dats hase scoepts modifications snd requests Tor information.
Access Lo the dzta hase is controlled bu 8 Flexible orotoection
sonems encoded in the dats base itself,

For sxameler 5 ussr whose wife has Just walked out on Phim
wishes of courses Lo update the dats base so a3 not to be
constantly remindsd of her whensver the depsriment issuss
invitations and announcements. He bupes ®udb® and then: in :
response to the UIE prompts modify’ and his name. UDR then
displays sach field of his data-base antryr and he enters 3 ywll
in Lhe Sprouse Tield and sxits. The data Dass congiders him
@lidipls to modify Lhat information and updetes itzelf. On ithe
ober hands 8 ney user who Wishes to De added Lo the dats bass is
certainly not eligible to do so. The dats Daze will permit only
g very Tew renple Lo 300d or deletes entries (83 oponsed to Fislos
within entries?

So Far Enis sonsme has served us fairly well, Most usors
are responsible about updating thelr own information: grestly
gazing Lhe task of azintaining the data base. When 3 large-scale
changs Lekes place —— Lhe entire epasrbment’s phone sustosm ust

arya

Chumnmgeds: Tor instance — we update the data base en Masse Lon isan
31 weeful.

The server periodically writes several representations of
frequently used relations invita towd files. These files are
resa-only and orovidcds faut access to the dats base. Hosts on the
natuwork periodicsllu transfer theses text Files to their local
File systems and make them gvsilsble for use ind 3 Thas programs,
Spead has Deen braced off against strict zcowraou text files
become outdated as the real dats base is modified. Bub changes
mace to the dsts bass sre distributed to eann host on the network!

vw every Fifteen minutes: so the delay is slignt.,

To make our nehuork raliable we needed Lo add 5 small Dut
important feature to tho Chaosnet operating-susten 2nfluare, The
Basilio problem dis that sarver FrOograms aed 3 reliable way to
netermivg who is ah the obher snd Of a network comection. To
solve this sroblems we modified Dhaosnet Lo Transmit user IDs and
Capabilitiss securely over the comection. The server ETO Bi
wsEs Lhis information: slong with the user iz stored in the dats
bases Lo determine who opened the cormection,. OF course this
sChEmne Nas problems iF zome of the hosts on the network cannot
implement Lhis king of security 50 Lhe dats Doge knows wiih yey
gach hath can oar cant, Ifiit can’t: Lhen nang of ths Tezturss
nescribed earlier becomes unavailsbled the file-transfer programy
For instances will vo longer do avtomatioc log—-ins.

The Grapevine data base devaloped at Xerox PARE has MEY
of the same donls as our dats ase. Grapevine differs from tho
Tools datz bass mainly in Dein distributed — Lthero Bre
data-Dase servers on several computers, This distribution alma
Grapevine a much larder sushop than the Tools data bass.
Grapevine is not 2 general data Dasers and it appears to be fairly
difficult to aid new Livgds of information the devise ale
relations] structures of the Tools dts haze makes it pansy bo acd
new kinds of data as we fosl the need. {ur data base was build
in a few months of part-Lime work: Grapevine 1s in many waus BUOY
gmixiticous but it Look mang bLimss longer Lo complete,

We are pleased with our current sohome ang ars considering
several enhancements such as remote goes Lo Piles and
PELWOTR~GLoe User dross,

poy oe,

B Interactivensss wersus Programmebility

We have heavily ampnasized inberactivensss in Live Lhe
Tools svwironment. The 7 2iltor: Lhe Session Managers bacloround
Comedling in Ta ogved the ME PrOocssE manggsr have all bhaown
cesigned to lel Lhe user BoOoompliah commer Lashg with fou
Laustrokes ang little thewighit,. The smaller Tonls Programs Ess
rey hadi ead incessantly Lo get the Dest ost of detmulte for the
padority of users. The unser dats constant incremental Feecihac
ono Lhe status of hig computations. The gol has been to allow
LE user ho concentrates on the bask at hang without WOT TY ng
ghoul procedursl details.

There are othsr shvironmentss UNIX most prominent SMT
themry tnat emphasize Frogrammanility DRITCHIERSD., In UNIX tho
#hellr the opsrating sustsne: the program liorearyr ang the oD
REOGT ERMA environment srs carefully congtructerd to allow
arbitrary composition of components. Folklore saws that most
UNIX programming iz done in the #hellr notin C. Each user aT
Construct hia oun gst oof teals, LINDY 15 noir: however: very
interactives sven simple Lazks require the composition of
Programs using pleess 1/0 radirections and anell scriegtz. The
enviroment provides 1iht le fesdbzaok to the user &% nis tasks are
exacting DNORHANEL1,. The user oftan nas Lue sangss of gitlhivel mt
a remote job ernbry terminzls sunmitiing batoh processoos 10
Waiting Tor than to terminghs.

Consider the following task. 4 teaching assistant for =
conpuler science courses wishess on Lhe spur oF Lhe moments to
Fired out which of his studants gre currently logged on to the
system and rumming 8 particular rrodgramn. He wants to mail the
results to the professor of the courso,

(In LUMIX, the most likely APRPTPOECN Would ba to filter the
nutyul of the sustem—wide process status program PS Lhroush Lhe
Fattarn-matching program: GREP and use F pire Lo redirect tho
Final oulpul into 5 temporary fils: Lhen UES Lhe mail program bo
sev hw Tile Lo the professor. In the Tools environments tho
moet likely areroach would be to lsh OM log the output of the
BuRLan-wide process status program SYSTAT. gait the log: and than
run Lhe mail program in the maockground behing the editor.

Piet es say that tho topple assistant is not intimately
Familiar with either UNIX or T e-26., The defzult for the UN Hd
programe Fes i3 to print out Oily NAS own processes not the ;
processes of all users. The default for the TIFa--20 SYETAT 4m tn
Print oul 211 the users Dut pnt WITLON program each user io
running. So in Doth roses the assistant needs a reminder sical

a0 artiongl switoh. On UNIX Tor PSs he will do hele ves which
Fives nim Lhe complete on-line documentation for PEI

FRLL: URTE Prodrammsr’s Manual Fall)

ft
PE — process status

LYRE
pa Lb oareghlativouet

4: a
ES

Fe prints Information aboud processes. Mormallus only your
provenses are candidates Lo be printed Dy pel specifying no
mausses Oobher users processes Lo be candidates Lo be printed?pn ip seat ia al ar hati pn Spiel as aks ob alan en oh Sed ensofaATreEAestoispecifying =» includes processes without control terminals in
tie candidate pools

All output formats include: Por sach process: the process id
Fills control termingl of ithe process Ts cpu time used by
bee process TIME (this includes Dolh user and system Limes

vel Son oh ar. Yr pute. Pr seth 3 Bu, a pevions ame es tue med orn re a See ey wre ade’ mp) pee. ope 3 3 fru gthe stale STAT of the processe and zn inddicstion of the COM
nine Yr iep van em pew . tn no ve yg EYmr soir ian swede Tu eH rt on 5 - La ‘oo =MAMIE which i3 ruming. The states is given hw a sequence of

or oe 3 5, IA 2 5 TN % 3 : ptr Bern am hn ge NL YessFour deters: e.g. "CRURAT. The first letter indicostes thega di eta Gg TR iy S75, ram ae . bch, eng pierre BreThaaa*vunnsni lity of the process BE Por rameEbhle processes T FOr sd

i —e wwe: PRES Io u o i Le ove ate] saw see) a Yet non ave ” sani wn or v8 pom 3.see Bylo oEC om Tor Luo hwwired lines: almost all of which
ve ae to read Lo discover that the form of the command he nesds
15 ps —axuts To gst the same kind of healer the Tools-using

3 3 . ° wen Aes aie o : ofa IT {el 2H Fm TST Sh avs tn, pad Er hEagusistanty taking advantage of TOPS-20'z command-parsing
facilityr types

® sid Re + at 3 it

Fri oehsd

hg of the followed?
boyd TE 2 EYE oY oe -, er PRI NY SY ENS torre 2 rrEll. lbs CONTROL TMG HIDE TIRY pike

re a wilh a inLIMIT J LF Mia +41)
i rs en entire ne HAFEOERAM - STeTE BYSTEM Y Avie Wi
WHERE L1H)

OF UEer nama
Or divschbory nape
or decimal Job number

ITT
a

we a?
or 1 : i

ar oomfivm with carriage return

tes OOmwpiste in sleaven lines. The reminders are Lerzs
but mnemonio and rely on the interactivensss of whe sustem Tor
RfFlciancy, If ihe assistant gussses MOG Bnd Lures fmustatl
program’ as he probably wills no great harm ls dong Te
tebput from the incorrect comsmand i= pull —- ari Ie CEN Suess
*auntal uwhat® second Lime sround.

Mowe iw teaching assistant ov UNIX will Mave to go bhrowdn
g whale sel of steps that sre obvigted in the Toolz srvironment .
First hg will have to run FB at lezst ones {supposing that he
gets Lhe ridht command options straight off) to look Zt Lhe
formal of iis output. Then he must construct a regular
expression for GREP Lo use in picking oud the desired linsot Ua=e} gre osnh®.ooThen{agninsupposingthatFegetstherightredular sxeression straight off) he must redirect the Sustput bn oo
Filmi "ve any lo odren cab Soshy-uzerz®,. Ano Finalluyr to be sures
that no disasters have befallen the output he oust tops out Lhe
Tile.

In ths Tonls snvironment: 8H has gutonaticslly heen
logging the ouleul from SYSTAT along with all ithe obharp
Lransactions of the assistants Lermingl session. 4 Silda
keystrole Lakes him to the lod. The rower of the 7 editor false
reading the output and picking out the desired information
simultansous: ne hwo-keustiroke command adds Hw lines he likes
Lo og buffer while he first looks at thems so that hs never NE
look a second time. Having identified 211 the users he HES
looking Torr he dumps into 3 File the buffer containing their
VISES »

To mail his file on UNIX: the tasaching assistant must
invoke Lhe mall program: ture in an escapes sequences List
driloates ne wishes to mail 8 Filer type in Lhe nang of nig Filse
Zl then tues in a command sequences Lhat sends it. To mail his
File in the Tools environment he simply adds BRR Tage oben
the oedinning of the file snd uzes a two-stroks command bo run
Live mail program in ‘backdround compile® mode behind the editors
mailing the Files instantansously.

The chiaf characteristic of the Tools snwirovment is its
naturalness, Lhe sense the user hss of moving Lo the completion
of a Lasik in lerms identical to his originel conception of the

2A
aa oR

Seetend

task. The tesching assistant need not Fhe Lo think about the
Qulent of BYETAT we mn mal of TEHUIET SHEressionsgd he need not
stop bo think about seeing what students ses FUTILE DLE program
#5 axtracting 2 subsel of those sxpressions and rasiveciing thot
used to 8 File. He meed nob think nrprarioenl le ab wil,
instead he performs 3 series of small sheers: sessing the resulis
of 280h sheep apeear instanteously on the sorosen, Frey mistake he
makes is necessarily brivisl Fl audckly undone. The sensation
Of working in the UNIX snvironmesnt is #rikyr Dracingrs 311 or
mmthing. The sonmetion of pnrking dn Tonle Sa smonting
thoughtless: casual.

Which is better, interactivensss oF Proadrammand Lita?
Diredously this srxample iz biased in Tavor of interactivensss,
Thera gre mang Limes when the programmant Tite of UNIY im
irvalunble, If: Por esxamplers Lhe tesching sssistant wanbted to
repagt this same bash over and overs Pe woulo EVE no ohoioe bab
Lo reconceive 11 in programming terms. OFLows MowEver se UNTH
VEGMLTEE Lhe user Lo divert his attention From the primary hash
at. hand and concentrate instead on programming. The Tools
Environment subordinates simple Lasks to gugle in 2 way that
were fing easy and natural.

Tne Dest of both worlds is always, triviallyr 3 desirable
goal. Accomplishing that gozl ig non-Ltrivizgls however: since
ivhearaohivensss and Frogrammanility often conflict. The Tools
grour was effectively discouraged From grploring programmability
on TOFE-20 because of the erxistencs of 2 large amount of
gnzential bul ‘prehistoric’ softwares that lacks the siunle
notions of standard 170 and command-line arguments, From the
oLlier ends we ars sncouragsed to nobto that the eeorle working on
Berkeley UNIX ars sttempting to imerove its interactivensss

Vwnaaraay,

Li BEArk

' More Raw Materisls! TOPS-20 3s = Sysisas—Frogreaming
Environment

+ The normal environment for sustons REO anmin on TORS-20
is turldogl of large Limg-~sharing sgstems. The main Fro EL ve
landuadge 15 assembly languages. The DEC-10-320 instruction wah da
very powerful and well sulted to certain applications (such ane
dmplensnting LISF)» but gssemblu-languags Frivgramning remains 2
Laedious ohore.,

Thera is no common sei of subroubtives to assist in
» develoring programs. DEC suprlies a primitive subroutines

litrraryrs which consists mainly of assembler macros HN
error-nanddling routines. There are no routines for FETT ormlng
170 {Toreatted or ntle glorade allocating Anherrurt handlings
or any obner such seelications. Some sssemblu-level user
suildrouting libraries have bhsen developed (Columbiz Univarsity's
computing facility has developed a fairly extensive library): but
they are 3till limited Huy the orudeness of the implementation
langusds.

The quantity and guality of the comments on POET 305
varies bul usuglly fails to hele gnwone who didn’t write 3
program undarstand dt. dnd the opacity and confusion of
gzsennly-landguasdes programs is well Enown. Frequentlur a comment
merely repeats Lhe function of 2 statement without patting Lhet
function in the context of the surrounding codes.

The development of ths Tools sysiems—programmning
environment was mobivated bw ingdequazciss in the Dass TOFPS-20
Operating system and positive sxperiences with UNIX CRITOHIEZAD,
UNIX is one notable sxception to Lhe pattern of Going sustems
prodramning in assembly languages and assuming bhatt avery eles
is doing to do systems programming in asmennly language.

The sophistication of the TUPS-20 operating sustem gn Lhe
Breed and lards address space of the DEC-20 have macie 1 possible
for us Lo 90 far oegond UNIX in designing our snvironment,
Compgred with the FIF-11ly ov which UNIY evolved: TOFS-20 offors &
bi Widder ranges of opsrating-system primitives for Process and
terminal controls 170 avd Tile system operations: and PEC LY
manasenant,. We did nob restrict ourselves Ln pmo lemsnt ing :
run-time prisnitives ang swustem utilities like those on UNIY —- it
wie oth our intention to mete 8 UNITY clone. Us sonigdnt Lo srploit
the Tull capsbllities of TIPFS-20. Towards this ender wu
implemented 8 larde run-time library in 8 high-level Languages
thal provides g simples powerful means Lo aocess zlimosd 21 let
Lhe oaeanililitiss of the TORFE-20 operating susteom while hii

yrs

nt eves oof 1 a, Tem par ord ode oemielst low-level man le,

10 The Tools Susiems—Frograaming Environment

Tie Tonls ss Lhans-erogramming onvironment i8 Desa ony the
belief that systems Programming in generals and on TOPE-20 ip
PRTLICUlEY ry can andl should be OnE In 8 high-level Language.
This belief was bosed in Pars, on Whe supcess of oon UNIY. Tim
Pelief is mol radical. Computar snlentiszts have recognized fo
some Lime the value of high-level programaing landuadses. Bub in
Ee "real world (which F%in includes most of Badeny) the wisw
i not desd that ovily sssemblu language TEN make systems programs
Both compatible and afficient. Thus our use of Z nign-level
lanouage is radical in rrachice.

The languages of the Tools Environment is BLISS CUULF713.
We use = slighblu modifies werilion of the BLISS-1C compiler
developsd at Carnegis-Hellon. BLISE ds an Algol-like
clock-struchured srepression Lantusdgse whinge distinguishing
Fegturss sarod

Tursisssness. RLISS Nas exactly one ture! tha MSIL
WOT

Arnitrary goress to "structures®: i.e. records. A
structure is defined bu general expressions that
compute adiiresses based on a rolnter to an instance of
the structures and srguments specified when referencs Lo
tne structures is meade,

Uniform freatment of identifisrs, The concepts
Levalue® and "R-value do pet exist in BLISS.
Tdentifiers sluaus refer to gdiiresses. A spacial LYI3ry
operator (*.") must be apelised to gn identitfisr Lo
retrieve ils valus.

Liossnsss to the machine. &HoTso lets the programmer
use low-level festures of the machine srchitecturs as
PIE HEE BrPrarrighe,

Hao we szttemphed bo implement the library in 5 strongly
burad languages such as Fasoals we could not have been Early so
pucrenatul. Bironals toosd Landuades are not powarful SEV Lo
implement & run-bime environment: they cammot manipulzte fupme nt
Pun-Ltime. 50 Lhe designers of HF bdred landusde must implement
DOR 8 run-time environment in the language itself ang # set of
Fun-Lime superort routines in machine languages. In contrasts
LIER presents no obstacles to lmplementing 2 run-time
arwvironment -— which is why its desidaners Pelt no arligation to
package one with the languace.

Wee Sod

TI:
so

ane FI

IT 2 run-time libvary is 40 be effactiver it mush be BERRY
Lo use. This means routines thgl Laie deneric arguments an
YEPLable numbers of arguments as may OF Lhe routines in ths
Toole run-time library do. To Provide hese conveniences in a
stromdly Lupsd langusds requires that the programmer Duypasss Lhe
Lgpe swustem: resorting bo such bime-honoron metas ss externsl
Procedures and machine-lanouads subroutines,

Anchner interesting comparison is between BLTOS and Lie
programming language OO. Since LUMIX provided our initial
motivations we discussed at considerable length the poassiinl lity /
Gf implementing a3 © compiler for the DED-20 Evel using UT gs our F
languade., We nad Lun obdsobions bo using UC. Fipats thnugdh thers
are & Tew L compilers Tor the DEC-20s they produces VEITLD PIO
onjeoct code compared bo BLISS compilers. Seooncds Man Oo progrzmng
Geren either blatantly or subtlur on memory organized dn B-bit
gles gna lé— or 32-bit worods. Lorvvarbing trivial CLIX
programs Lo run on the Z3é-bit word DEC-20 would not be Marcie Duh
Lrivial rrograms are g8lso the saziest to rewrite in anntner
languages. Converting the complicated but mors uosoful BOOT ams
suc as TROFF or all to yun on 2 36-Rit machine would be
AifTicult,. Conwerting CANIY programs that were ERE du -
dependent on Lhe UNIX arerating swustems such 8s the snall and the
directory manipulation toolsys would be impossinled thsy would
nave Lo be completely reimplomnsnted,

Another advantage of BLISS over © is its powerful mats
structuring. Unlike Oy BLISS provides uniform reference bo maha
sbructures [Desconke?317 it separates the suntar of structure
references from the actuzl implementation. This lets tho
Programmer onangs the implementation of 2 dats structure without
changing gll the references to it. In Cr there is oo meparation
petkesn suntas and implementation? when the implementation of a
gata structures changesy zll references to it must bo tracked down
rl onangeds a formidable wnddertzking for lavas BROS BMS,

Much OF the power of BLISS s dats glructuring derives from
its clean pointersealue semantics [WNuld?0y WUulfrio, In mont
Languages, ldenbiflers and expressions ars interereted
Sif ferently aooording to whether they are ussd on the lafi—handg
ge bw orLghvi-nand side of an gusidwment? iv BL Ton, EXPT EES LONE
are interpreted without regard to context... In essences #31
#eprassions are address (pointer) erersssions! Lhe unary operator
*+ 7 must De used to extract the conlants of an aricivess. BLIESs
Clasn semantics: combined with its uniforsly referencod timba
structures: makes structure definition easier and more efficient
Lian an Oe Many wrogrammerse: when they first encouatvher BLIES,
all at its uniaus semantics: especially zt the whl mudibouns ot,
Buk lke the paresnlhises of LISBF, the *.* hp # poppe thet

Baparienosed BLISS programmers Ting far oulwueldhs 3d minor
Suwnltactic clumsiness,

We ware not concerns gli senguade sorted lity, Our
Initial Soul une tn Foals 5 ndgbh-level ivterTace Lo 31 Lhe
Features of Lhe TOFS-20 DReErating systems Features most oLiner
oparaling sustems lack, Since BLIGE is ideally suited for
PrOogrammivg on Lhe DEC-20s ib was the logical choice.

IF Lhe choice of LANGLEY Was importants so were the
PF oprimitives chosen for Lhe run~time library. [evelopers of

suizrouting librariss often make the routines too low-levels
library routines should be significantly leas trivial than what =z
Prodramner woulda want bo re-code hinsalf, The Tools library
CONMTELNE mang routines hat are sssentisllu "mini-interpretorg”,
Thess routines bale TOMBE LSE grdunents snd perform DNR LER
Grerstions,

The major functions rroviaed by the library are shtorads
gllocalion: string manipulations Tile i/0 formatted and | Cees
unformatted [7/0 softusre interrupt controls process controly ang IIL \terminal control. Other mors specialized routines exist for
patiarn-matoning on TEGULET SxDressionss manipulating sumbnl
Latlesy nebuork copmunications sorting Pricrity Quausas
wnber-process compunicstions avd electronic mail. . \

AS We workedr we learnsd iat 3 sustens—programming
environment desvends on social as well as technical mabieras. An
ethos developsd! 2 set of drug standards and a3 sense of common
responmsinility. Cleans consistent programming stules Lhe SET LN
of Code 3nd sxeeyisness a willingness to mzgks ohangss bhatt
require old programs to be nodified —— these were 33 important bo
Dur sucess 5% Lhe implementzgtion LEanduade and the careful CIMnioE
of erimiltives for the subroutine library,

Paria » inefficient coding is sossibplo In ANY Prodramming
lTanguadsy structured or nob. And by the same holkenes our
BAPET LENE NES Deen bhatr given B pociicum of sglf-copntrols Cleans
Clear programming iz also rOsslDle in anu prodranming languacs,
Wind ie where is wide Delis? that BLIEE i= particularly ill-suited
Lo clesn coding: we found it nn worse & vehicles than sny othar
Alanl-like languages,

The high coding standards of the Tunis project are the
result of peer pressure. IL im the ruler nol the sxcovtion: For
Programmers other than the author to makes Bhi ig hie mest

xart

Functional changes in | program. During the course of the
proJect at least ten peonls Mave programmes in bh gyri ronmend oe
Ea 311 the code arnuove writes ig subjected Lo poruzal E113 review
oh osone subset of those Programmers. To counteract
FOBsessiveness about coder we have made 5 graat effort Lo
malitain an ethos of "sooless programming”,

Sharing code and densralizing code Lo form roulines for
Lhe run-time library also involve socisgl lasuss. For &
subroutine library to grou successfully users of the Library
Mave Lo modify and contribute to it. Many parts of our libvarul
originated in specizlized code from a particular tool? BOMSBOTIS
Biter the oridinzgl author or sone other programmers then
gevmrgliized it to make it useful in #& wider variety of
gpplications,. The commitment Lo making such generslizastionse
glinouwsn expensive 2b the timo. MEE saved Lime in Lha loved tun by
llowing us to share sach others WET,

Often after 3 large software prodect has developed and
Becomes stable for btwn or threo GEHTS 11 Decornss very difficult to
mike maior changes and improvements, in Lhe cass of the Tools
progects we have zt least threes times MEIN ME gor changes that
remuired *reouilding the world — @xEmIning and recompiling
Bvery single Tools program, Frobsbly the most colorful of Lhsse
Was Lhe cecision to redefine the representation of the Boolean
values TRUE and FALSE, Trere were gt that point alrezouy several
dozen Tools programs that had to be modifiszsd to aeoommonats Lhe
thangs. We have i commitment bo making mador changes that
Lmprovs efficiency and overcons past structural and design
limitations. Whils the transition is sometimes pzinfuls tie
LRT ovEmnents pag off in the long run.

yr

11 Comparison with Dther Similar Frojects

A WE S5R1Idr we hedan working on the Toole Sresl ronment
Because of dood experiences with UNIX. But UNIY iq {85 We we
glrsady indicated) by no means perfaot,

Lr Lhe UHIX programming langusdse is Magnly regarded, Dut
We would assert thal the successes of the environment mre cue bo
Clean coding eractice and not to DO RET E82 any more bhsn our
BucCesses are dus bo BLIGE. The Tailures of © and UNIY FEE
resulted from forgetting these principles vl rlacing Faith in

© the ides thal aderly weiting dn DD oall oy itself makes things
clean 8nd assy to wndershand. The UNITY 2rvivonmant contains
VME OUs axanpless of oode whose style falls below the iain
standards that the sustem zimed zt.

Arter problem with UNIX iz that if nas Decoms shagnasnt.
fhe designers of UNIX implementziions on Izvder susisms such as
Lhe Uak~11 have niszssed ths areartunity to tabs advantage of
increased resources. Rather than wreating the transfer of the
UHR environment +0 morse flexible MECTLNes 82% 8 ohancs to
re-think design issuss: the UNIX world has been satisfied to keep
Lhings shatic.

This stasis would be no problem if UNIY were tho gah
possinle environment for users znd for sustens programming on bhe
larder machines. Unfortunatalar it is nots awl sxperisnce on
Roth UNITY and TOPS-20 has made us rezlize the extent to which
LNIX lacks the mechanisms NRCBSEaTY to Dulld itself up and make
itself more sophisticated. We belisve that UNIX should be
reconsidered in the context of the largsr MECNTLNES,. Therese ones
g time when compatibility with earlier VETEILONS mush he
suirardinsted Lo higher goals.

Tires olner prodects that bear some Rimilarity tn our en
gre the sultli-Torbing EYED, GEN eg WEED Tari, sno the
Lrodrammaiie EXEC.

The sulti-Forking EXEC (ME-ENER! is 3 version of the DEC
EXEC with mowiifications Lhet allow users So Leap several active
Forks. It serves 2 Tunction similar to MUFF‘ zs but the tuo differ
gragtly both in user interface and in Lhe way they were
STEEL vs ail,

Thsre are several user-level difforences Detusen ho
PEERED ang WULF. Ove if Terence dg thet dn the BFLAer Ts uma

orod

bypass Lhe Tull name of a Frogeran Lo resume 2 Tork? in BUF: the
user types & single control key.

In HUF the user decides which programs hs Wants Lo boon,
He specifies these programs in an ardtlaldnantieny Filta, Ivy tho
game initiglizelion filer Lhe user can BERcity parameters Lo De
gEancianted with a programs. For ingtancer be can srecify Lhe
default arguments Tor g program. In the MEP-EXED, POG amen s
mansding Lhe snvironments not ordinary users: decide whioh
Programs Will automatically be kent. We have found That users
retain the same forks day in and day out. HUF lets ths
@xparienned user set up nis environment exactly 35 hs wants iL7
its thers waiting for him when he logs ins znd he doesn’t FE
bo gdve verbose commands bBo recrozte it.

BOL a8 8 uwlilite for users and a3 a risce of softwars
srddingse ings MUF has the advantage of being part of 5 large seb
of software tools wilh which it is well integrated, The ENE
cannot be said of the HMF-EXEC.

MF acts As a Datisr fork changer than the MF-EXEC. For
gxamplar Ln the WF-EXEDy 10 switch beatusen # Lisp process and his
2aitors Lhe user has to types *lisp® and "edit? ard MD ayel AF
Hain and again. In BF: thanks to well-snginsersd refaullar Lhe
same et feol is achieved by singles ksuystroless one to switoh from
the aditor to Lisers another Lo switch back.

in the MF-EXEC, arduments cannot he passed to 5 keph
program. For exemeler on the first entry to the sditor: Lhe user
Can specify on tne command line the name of ths file ho wanrhs to
edit. Un re-entryrs he cammobd he must resume the editor in the
previous Tile and then give the editor CommEng Lo ohange Files.
The MF-EXELD and Lhe programs that run under it nave non
Frgumnent-passing convention. In the MUF/ Tools sovirorments bhe
USET Can resume § program elther vig 8 single control keys
Fraservivg all the arguments of the Frozen stats: or viz =m
command Live (rezched bw tuping the control-space kew Firat)
Wah can conha2in ned program srogumsnhs.

The sndingering of the MF-EXED is unimpressive. Tha
implementation of the MF-EXEDC required major moi ticetiong 20 Lhe
LED EXEDy 5 30,000-line assemblu-langusge progivran. DED has nous
at last included the modifications in iis distributed sourcoss
Dut disabled viz assembly switches: znd DED does nob support the
disabiad code. So any installstion thst chooses to use the
MF—-EXEL Decomss responsible for re-intedrating modifications and
loose] bug filivses with future ED relsaass,

Ah Lie Limes MUFF was being developeds the MF-EXED uaz not
gvalianlia:. This was Lo our ultimate advantage. BW news sxiats
an & separate unlit: written in BLIBE and immune Lo Lhe vagaries
of E's moftusre releasing rrocedures.

HARD iz mimilar in spirit to ME-EYEE with Luo maior
Sit Tarances, Filrsl:. MYED hee the abvidite to males macro
axtensions bo Lhe command langusads. Seconds MEED implementsAL Ed Torin with smiltivlie inbo owl *weoudee-tarminale?.s|Theragson Tor this second feature is to have Detter control over Lhe
17.03 Flow of the smuldinlis pnrocosoes.

flupimaiyy oh ieckion fo MYER da thet 41 de inappropriate Lo
TOFE~-20. The problem MRED 1% brgdng to overcomes wy the uss of
multiple Jong is that sultivle processes oan white to the
tarvrmingl simultenecsuslae their outreul being randomly inbermisos
g3 tre valve controlling the pseudo-terminalse: HEEC oan control
gutpul from each of Lhe obs. Unfortbungtelur sub-Jdobs ng
peaudo-terminals are very expansive on TOPS-20. If the gozl is
Lo produce waablesy efficient softuasves MECC fails. Using
multiple processes Linst densrabte output Lo Lhe terminzsl is
impracticsl unless ong zlso makes the commitment to
PRigi-raesolution displse terminals where sch process can ouheoh
to its own ares of Lhe sores.

In the Tools environments SMe the session managers: desls
with Lhe pronlem of Lhe terminal output of multiple processes.
In fact: SH uses psswio-terminals (but not sub-_obs). We wanbhed
an efficient sustem and we were limited by our terminslsr so owe
compromisad. D9 maintains the output of one process very wells
gnc 1h can maintain the oubteud of morse than one process with [UF
doing Lhe sunohronisstion.

The Lhird proJdect that somewhat ressmoles ours is Lhe
FLEXES y union e2ddreszes tne issue of interzoclivensss versus
programmani lity eg proviading g shell programming langusgs with oan
interfaces to ne TOFS-20 command parser. The main advanizge of
the POLED da thet dt gllous the user to define new conmands
that Tbe full sdvantade of Lhe parser. For ssampler he sunbaoe
for the Tools patisrn-natoning program GREF looks like bhisd

BREF (—ovawl?%i pattern Tile [file +..0

Trim optional sivglis~-isiter switches sre vot highly
mrmannle == hr user aueh read the hwlp Pile if he doesent
Pamamoar wnat thay a1) do. Bub with tiwe FULAENEDy 3h de oneeinle

3

ru
red aad

bn clef FPullt mises Top fen that tells the user what the
Program expects at each point in the commands with BWiLoh names
Fully spelled oul. By twusing Tr the user can Inntantly img out
Lie suntax of the GREP command.

BEER 7
patiarne: or one of the Following?
Jignors-oase Sno-texh Sstraigqb-test Averbooe Fuld pe

(If course: the TIFS-20 parser will also recogni
- C oghbrevistions and conplets them automatically so Lhat Lhe

bersensss of the TIDLSAUNIY suntasx 2tyle lg wit gacvificed,

The user defines new commands in an interpreted ALOGOL-1like
landusgs with built-in functions For goeceszsing the parser znd
gbiwer paris of the operating system. This Landuadge is ths main
sh sadvantadge of the FPOL-EXED. Though Trivial for sxperi
Programmers Lo learns the PLL-EXED language really is DET
NOn-PTodranmer ss. Defining simple commands requires a significant
amount of prodrammings which violates our phillosoeny that simples
tasks should be simels Lo sypress. For examples bolh the TOOLS
Bw ironment snd UNLE provide very simple methods for creating
paETanster ized command scripts? the facility is used neEsvily ou
gll experienced users. To aocomplish an 2quivalent task using
iw PUL-EXED vauguires a fair amount of Programming: enough ho
GLECOUN EES avan programmers From using it often and of course
proluding nov-programmers completely.

The FLLC-EXED also has seemingly trivial engineering Tlaus
that discoursde ils use in the Tools environment. When g Tools
program 1s modified or 8 new one iz addedr it is relegead® Tor
paalic use mergly bw placing 4% in = specizl directory? users
iresoke Lhe program merely by turing its name. Sut to invoke 3
FLL procedures either it must be preloaded inte the EYED Ws Lie
EXEL 33 Duilir or thw user oust eel ini tly Ek For dt be un
loaded dn dg cures RED, 214m wiweasonahle Lo aek users Lo
logo FUL procedures. Mob only doses it places AN UrMSOSBE sry
Burden on theme il puts Lhe operating sustes under HLT 258 DeCsUse
@rplicitly loaded procedures afte not shared in mengry like obher
FTOdramns —— aach user has his own corw.s On the other MIENCs
preloading public POL procedures into Lhe EXED ig non-trivial it
Forces 5 new EXEC Lo be rebuilt sven Tor tiny changes to one FOL
PrOCEdurer placing an unecessary burden on tho sushans
PE OGT EMMETT ang discouraging changes,

wi would have liked bo use the POL-EXED bo defing the
mopmETEl- line syntax of 811 the Tools programs. Ezeh Tools

program «ould have nad 8 POL eroceaures That boo full advantage
of Lhe TORFD-20 command parser Lo parse dhs commana Lins snd bhon
irwobkad hw program With a mumtarticelly porrect compayyd line.
But beocsuse the PCL languages is so verbose ano Decsuss 14 Le Loo
Wi2iie, LO support 8n embedded specligl-purpise language: we haveshaved wilh our simple UNIZ-stuls suntax:|MHamugllyweitingandmaintaining a 20-live FLL weocasciure Por aso of the 1720 Tonia
prodrans would consumes pore Lins than we nave,

Given that the POL-CAED is programmable only oy suapertd
programmersy Co they fing Lt os suitable tool? Only parftislliu. ;
Lhe landusiger like most snsll lsnduadesr 1s very primitiver Lassies
aah wonivh De bepivial dn Llispaor GPL are Rluddcuyy difficulty ov
impossinle in the FOL-EXZEC. The only data tupes z3llowed ars
strings ano numbersy there are no ssguences or sets. Though Lhe
intbarfaoe Lo he earesr gid tne aperating sustem is clesne 14 is
inoonplstes preventing the programmer from getting at mang useful
Furnchions,. & smell landusdgs snpula pe either highly spsclzlizeds
in orader Lo make common tasks very easy (asoon UNIX) or nidghlw
poker uly 3 Tull programming landusge LThat dives Lhe expert full
gooess bo all the feztures of the sustem [lisebnellT?l. The
POL~EXZED da the dnnmpemonions middle —— it fend simple anoudgn Tor
gimpie tasksry ang it isn't powertul enough for nerag ones. (IL is
glen 3 dood ssampis of Now aoademio resssroh dossn’ ih pay
gtitention Lo the minor engineering delails that turn oul to De so
important in confortanle software.

The feztures of the multi~-forbking EXEL: the PUL EXEC: and
the Tools BEXEC have recently osen merged into 3 singls Tools
EXEL. Mang of our occasional users have FTowwd ths multi-forbking
fostures easy to learns th experts still prefer MUF for ils
mireed and succinctness,. nly a feu very experienced ussrs are
talking advantage of the programmanilily of the POL EXEC. While
We acmire the efforts of tne implementors of the wsricous EXER
prlansiong {all of thes Prom universities s 31 de stomomeiyw bn
realize he amount of gebra work that went into meintaining such
an ungainly gzsomblu-langustae program.

3d

erat

12 The Tools Approach

ACEGEMLS researcherss if Ley program at alls Lend Tar
implement prototypes Lhat nemonslrate only gross Tegsibnilitu,
True moment Lhey can publish their results Thaw move one lsaving
Lede software Dehing theme Incustru cannot afford Lo experiment
MLCT WL computing srvirorments graph for the kept hovwis in 3
Few prestise laboratories. The sof lugre hal industry markets io
erpEnEiver customers dsmang that it be shales that it be
compatible with not only the festurss but the puss of older
sOTtwarer and above 211 that it be on Ling. anything that works
at all iz left untouched. Sn aeadeny knows what to do but not ©
non Lo do itr ard industry knows hows to go dt Just wall anouah!
ut nol any pethter than that. Nobody knows how Lo do it right.

(har aim has heen to dizhill state-of-the-art concepts into
simpler practical erograms that will run on larger Limeshared
mEchings. The concepts in the Tools environment are not uniques
wrath distinguishes Tools is that zll these concepts have heen
moot integrated sng implemented on a standard operating
systemr Tor heavily used maohines. We were not interestod in
programs that could be run only on lightly loaded systemsi- this
commitment bo hesve ussge would in itsslf he sufficient to
distinguish the Tools prodect from most SCBROSMLE TES8aErch on
Programming environments. Even when the machine 1s very hesviiuw
logdedr Z and MUF still give fairly dood performance. We Deliove
that the rrinciples we have worked out in the Tools project offer
dood guidances for using timeshared computars 2s long 25 suen
maorangs continue to exist.

Much of the Toels project is not resasarch at 8ll by
traditions] standards. all of the ma jor components and most of
Lie smaller utilitiss nave been done pefors. some of them much
more powertullus There are multiple-procsass WMENIEGETS Nore
supnisticated than MUFF mang screen editors have features that 7
lacksd and its sassy to point Lo WIVIIDWI NY sustems moro
complicgted than BM. Since we were ab work night ewithim mand nf
UES y We heard over snd overs "Stor that necking and go do
research. ® (This paper is in part 3 response to BUCH onyicling.

Bul whers else could something likes the Tools prodect hake
panna? Devhainly noth dv Lhe rend world of Frocouchtion software.
dE compromised, bot only where we ohosa bo COETOnLssy ant wheres
Lgnorant buwers could be persusded to FLUTCHESe Wwhataver we
Proceed. We never flinched from changing a srodeam thet we
Jane changed. If the over-zll design Was Daly we redid it: if
Lig dmplemsniation was slopeyr we rewrote it, When & nmeltter user
interface was sudgesteds we started over. WE useful new
Programs CEng alongs slither from within the Tools crmmunityy op

my
3

Prom oultsides we modified ths alo RrOGrang or the viser Or Dobiehe ve’ a eed’ wed ‘ ao "

to make Lem wor Eo smoobnl Lk erdehner ldo ie work smed ag Zhe mmowmants of
Lime ho the thousands of little getails that are Lruiiwichinl le
trivial but that taluen Logether determine the Stiatitey nf on
CoRputing environment, Fh would ibe suloicdel for the Wren td on
gactors of dreustruy Lo ain gt snylhing better than az PERE
Flashy suit: vedardless of how ib Pulls and chates. We had thw
ad nn we aes dn gs Se an. aes 3. Lawn loin Semin a Jolla, en av ur rae : hee 3 phen, wie a3 Seo mes Beir wei nen CL son Lo mes: Nt Annaelerminsgtion and Lhe energy and we took the Lime to ngke an
pr enytgharalanlBTLGyflBrydee)elyrELmenonremAEEpnDeennBaTHaiireByvarronmeat hath fits like 2 comfortable old sesater,

eid

“ir3.
vod Bo

aur ponoy ed
ade

REFERENCES

BllndergraduateThesisd AMDERBONTG, EZ "Ancierson®s AUTHOR
Bod iia ic, as a. ainn P30 doen sw, Yt 1 Yr tee or Simin aren pit dere an aie be we i Nigiri "YT mviiaes arden . Sh

Fosraoe an Tor TITLE The Design mon Implementation of a
Bigfiaw Urisnted Editor Writing System”, SOHO MITOED, MONTH
hd SALA <p Sate *JEe TEAR 219700

BungergradusteThesis! WEINRERT?, KEY "Weinreb ALITHDOR
It a iv aro Sunn HT wae ws ar mee Xr ale ey »s. WR A en rms fis. Dey aid as - Rg oo mtr mn mn es ed £3.Melnrelye Daniel Lats TITLE Mf Fegl-Time Display Orisvted Editor
For the Lise Machine®s SCHOOL MITOSD: MONTH wilde YEAR 11979
Th. Soy ep ny 25 an Re ea et Bo 3

Lavan 813 Asie Willism Le i2ey ay yin umn 1 an I atl peesoesdroypie13Tu.A2waaoaMego: Fars 1lel F Frees ing Wi th 21) Siva VCE) Flam TL
Emralitus,

123 re cn gin bE weg aS ty ATE Be Ri wnt 1 ER 3 YR REDS Hala Vo : Soy fheLappuuinaiions of fhe ALH 29(8)I1S02-50%, August»
al Criedde ZEST

TITTY ET TUNIS Mies Tire F™ 1 | La roy Lam i "ut lemCDEC 2307 TURE~-20 Monitor Lnlls Reference Guide
Digital Zauipment Corporations Mar lizoro Mas 1980,

eR en i ns hnEllin oun Ellizs John RB,
, Nk ren emi ames Sey rlMuliinle Contest Shells,
zon ass oy wepnigen en (AT an 3 “ res pn frue win apy ean EyRessarch Reports YALECSD: January, 19831,

0 BYY os ras gro Lom Dg EASES Xen nL Je = Hg 108 pee RL le[oesonke 75] Leaschler Charles M. and James §., Miterhell.,
6 To ey ov fy nn . = meng eiey oenize Ff sus) ort, re iri ag pom she hare SE eek es,Uo the Froblem of Uniform References Lo Dats

£2%.8 poesirunturss.
Technical Report CSL-7S5-1r XEROXFPARD. Jararyy
i

soviwonisle sau 3h a le seu -* viele Sma 4Fl.antyz BOY l.antrzs Relith 4.
bag, ete ta ni TE ole bea oy Tae aed RIS LeLaiform Interfaces for Distributed Sustoms.
hi re ait wy wo iad JPA 7 rly ee a a a onfeconicsal Report TRE&3r Computer ScienceTFirvoy em ome + mins de Sa ie . %%sona)llheyiapartments University of Rochester: Mayr 1930.

HMetosglfe 781 Metoalfs: Robert Me. and David R.Bogds.
Etmsrnetd Distributed Fooked Buwitohing for Local

Lompubar Meltworks.
ss AAA PIE rt GR i I Ses RT 2 " oypanmunications of the afl » Julgr 1974,

Monon Biel Moonie David 4.
hE rs ew Lain aes sve WheLYE
al Memo S283. Massachusseibs InstituLle of Teaohnnlodgy

:, I a oP anid TREE avs Mom he mn sie Bans aArtificial Intelligence Labovatorus lines. 1901,
EY ra mart acinar a yf im rR Saas sn sew Fil a A,Horman 313 Mormane Donald &.

9, oo be id »4 - ae .e a3 . ae 4 i,VdThe Trouble with UNIX,
Datamation 27012) November: 1981,

A}

pepe pe py et rt ER is 3 ani Re ALheitonie 744 Ritrbiias 11, HM, zvul KB. 0D E0.
Tre LUMIY Tims-Sharing Sustoam,.Bn rr i a ma pe a BLligeJiahIStertSimeigimmepipeserene$iwopmuninanLons of nie sd IMT IAG FT Ba 0

1974.

pocnge Ln emer ayel os, oat Ter ie BE aPiedteliman 7771 Teilsimans WErTSn.
i5 Iisplay Urigniod CUOOCRBERN" 3 pEaliikLall:
Br i os Li reyterhnmical Report BEL-P0-8, ZERAPFARDe Harone 19/75.

Ey TT Woods Steven HN.
road Th an ati i eat me! wee. yas amd ie an gnZi The UOE Prowieasm Eaibhor,
a DR on ae end 0 ses pein Yous AT CUTIE A EURAILIv Proceedings of Lbs aC SIGELaH SIGUE Sumposin

RaeITC REL re RR Pf Aon Text Haoipuloiion:s rages 1-7. Aly
158 amiury fe Yvon ent mek ZY or wrt ae ie i - . Chey 4Part land: Oregons Junge 19BL.

e ye STE Pel TY ae ER > v—leope ON a,lhl 2003 Julifr William, eh. zl.Che "ities|iIIRCPVSLyansVt‘eamsow:iyPlIst Reference Manuals
1870.

ey oe my $l il . r 0 be a vi pg ga rm 3 VE Ye rs ooh eliPll Fu Lisle HW. Ber De. By Fuzzel avi ™h,. MH. Haberman,
Tel PENA A rete I le : Ar an)FLoiss: A Landgussds Tor Sustems rrodranming.Esha Se aime ad5prattaBs1lePTZictbarynonminanergypyCommunications of ibs ACH 1401251780770,

TNaronhsr»s 1971.

Table of Contents

- Raw Materislisd TIEFES-20 ?
* Raw HMaterizgls Fart II: The User Copmunity 2

The Three Rasio Tools =
Ao Tools Demonstrahion Ld

The Tools Frograms 14
Command Suntax for Tools Programs 1”
A Tools-stule Melwork 17

 Intermotivensss versus Frogrampanllity ne
y More Raw Materizlisd TOPE-20 gz a Sustems-Frogramming 24

Frvironmend
10 The Tools Systeme~Frogramming Environment 28
11 Compuriecon With {her Bimilaer Projects IR
12 The Tools Approscn I=

List of Fidures

Figure 1:3 A Very Simple MF Ruming 3 Frooesses 7
Figure 2: LIEBE Furming uanosr of 3
Figure 3:3 Aa Dimples MUFF 33
Figure 43 MUFF wit 4 Forks iz
Figure 53 a Manu-Selencdorsd BUF i=

i]

